I am going to answer my own question as I discover the solution from reading another thread and the manual:
//https://mc-stan.org/docs/stan-users-guide/gaussian-processes.html#predictive-inference-with-a-gaussian-process
//https://likelyllc.com/2022/08/03/additive-gaussian-process-time-series-regression-in-stan/
functions {
vector gp_pred_rng(array[] vector x2,
vector y,
array[] vector x1,
real m,
real l,
real sig,
real sigma,
real delta) {
int N1 = rows(y);
int N2 = size(x2);
vector[N2] f2;
{
matrix[N1, N1] K = add_diag(gp_exp_quad_cov(x1, m, l) + gp_dot_prod_cov(x1, sig), square(sigma));
matrix[N1, N1] L_K = cholesky_decompose(K);
vector[N1] L_K_div_y = mdivide_left_tri_low(L_K, y);
vector[N1] R_K_div_y = mdivide_right_tri_low(L_K_div_y', L_K)';
matrix[N1, N2] k_x1_x2 = gp_exp_quad_cov(x1, x2, m, l) + gp_dot_prod_cov(x1, x2, sig);
vector[N2] f2_mu = (k_x1_x2' * R_K_div_y);
matrix[N1, N2] v_pred = mdivide_left_tri_low(L_K, k_x1_x2);
matrix[N2, N2] cov_f2 = gp_exp_quad_cov(x2, m, l) + gp_dot_prod_cov(x2, sig) - v_pred' * v_pred;
matrix[N2, N2] diag_delta = diag_matrix(rep_vector(delta, N2));
f2 = multi_normal_rng(f2_mu, cov_f2 + diag_delta);
}
return f2;
}
}
data {
int<lower=1> N;
int<lower=1> D;
array[N] vector[D] x;
vector[N] y;
int<lower=1> N_pred;
array[N_pred] vector[D] x_pred;
}
transformed data {
real delta = 1e-9;
vector[N] mu = rep_vector(0, N);
}
parameters {
real<lower=0> l;
real<lower=0> m;
real<lower=0> sig0;
real<lower=0> sigma;
}
transformed parameters {
matrix[N, N] L_K;
{
matrix[N, N] K = gp_exp_quad_cov(x, m, l) + gp_dot_prod_cov(x, sig0);
K = add_diag(K, square(sigma));
L_K = cholesky_decompose(K);
}
}
model {
m ~ normal(0, 1);
l ~ normal(0, 1);
sig0 ~ normal(0, 1);
sigma ~ normal(0, 1);
y ~ multi_normal_cholesky(mu, L_K);
}
generated quantities {
vector[N_pred] f_pred;
vector[N_pred] y_pred;
f_pred = gp_pred_rng(x_pred, y, x, m, l, sig0, sigma, delta);
for (n2 in 1:N_pred) {
y_pred[n2] = normal_rng(f_pred[n2], sigma);
}
}
NOTE: A bug in the code was discovered on 2024-12-11 and has been corrected.