Estimating slope and intercept (linear regression) for data x vs. y with uncertainties in both x and y

I have a similar model with just a slight twist. I assume x and y are observed with known uncertainties that are different for each observation. The latent y is linear in the latent x + an additive error with unknown standard deviation. Here’s the full Stan model

/**
 * Simple regression with measurement error in x an y
*/

data {
  int<lower=0> N;
  vector[N] x;
  vector<lower=0>[N] sd_x;
  vector[N] y;
  vector<lower=0>[N] sd_y;
} 

// standardize data
transformed data {
  real mean_x = mean(x);
  real sd_xt = sd(x);
  real mean_y = mean(y);
  real sd_yt = sd(y);
  
  vector[N] xhat = (x - mean_x)/sd_xt;
  vector<lower=0>[N] sd_xhat = sd_x/sd_xt;
  
  vector[N] yhat = (y - mean_y)/sd_yt;
  vector<lower=0>[N] sd_yhat = sd_y/sd_yt;
  
}


parameters {
  vector[N] x_lat;
  vector[N] y_lat;
  real beta0;
  real beta1;
  real<lower=0> sigma;
}
transformed parameters {
  vector[N] mu_yhat = beta0 + beta1 * x_lat;
}
model {
  beta0 ~ normal(0., 2.);
  beta1 ~ normal(0., 5.);
  sigma ~ normal(0., 2.);
  
  xhat ~ normal(x_lat, sd_xhat);
  y_lat ~ normal(mu_yhat, sigma);
  yhat ~ normal(y_lat, sd_yhat);
  
} 

generated quantities {
  vector[N] xhat_new;
  vector[N] yhat_new;
  vector[N] y_lat_new;
  vector[N] x_new;
  vector[N] y_new;
  vector[N] mu_x;
  vector[N] mu_y;
  real b0;
  real b1;
  
  b0 = mean_y + sd_yt*beta0 - beta1*sd_yt*mean_x/sd_xt;
  b1 = beta1*sd_yt/sd_xt;
  
  mu_x = x_lat*sd_xt + mean_x;
  mu_y = mu_yhat*sd_yt + mean_y;
  
  for (n in 1:N) {
    xhat_new[n] = normal_rng(x_lat[n], sd_xhat[n]);
    y_lat_new[n] = normal_rng(beta0 + beta1 * x_lat[n], sigma);
    yhat_new[n] = normal_rng(y_lat_new[n], sd_yhat[n]);
    x_new[n] = sd_xt * xhat_new[n] + mean_x;
    y_new[n] = sd_yt * yhat_new[n] + mean_y;
  }
}

Here’s some R code to create a reproducible example:

testme <- function(N=200, b0=10, b1=1, sigma=0.1, seed1=1234, seed2=23455) {
  require(rstan)
  require(ggplot2)
  set.seed(seed1)
  x_lat <- rnorm(N)
  sd_x <- runif(N, max=0.2)
  sd_y <- runif(N, max=0.2)
  x_obs <- x_lat+rnorm(N, sd=sd_x)
  y_lat <- b0 + b1*x_lat + rnorm(N, sd=sigma)
  y_obs <- y_lat + rnorm(N, sd=sd_y)
  stan_dat <- list(N=N, x=x_obs, sd_x=sd_x, y=y_obs, sd_y=sd_y)
  df1 <- data.frame(x_lat=x_lat, x=x_obs, sd_x=sd_x, y_lat=y_lat, y=y_obs, sd_y=sd_y)
  sfit <- stan(file="ls_me.stan", data=stan_dat, seed=seed2, chains=4)
  print(sfit, pars=c("b0", "b1", "sigma"), digits=3)
  g1 <- ggplot(df1)+geom_point(aes(x=x, y=y))+geom_errorbar(aes(x=x,ymin=y-sd_y,ymax=y+sd_y)) +
                      geom_errorbarh(aes(y=y, xmin=x-sd_x, xmax=x+sd_x))
  post <- extract(sfit)
  df2 <- data.frame(x_new=as.numeric(post$x_new), y_new=as.numeric(post$y_new))
  g1 <- g1 + stat_ellipse(aes(x=x_new, y=y_new), data=df2, geom="path", type="norm", linetype=2, color="blue")
  plot(g1)
  list(sfit=sfit, stan_dat=stan_dat)
}

which should produce this graph: