Difference in behavior between integrate_1d and integrate

The code I already posted will generate the error messages. For reference, I get:

> order(-10,0.67,theta = c(t,A,v1,v2,s), x_r = double())
Error in order(-10, 0.67, theta = c(t, A, v1, v2, s), x_r = double()) : 
  Exception: integrate: error estimate of integral above zero 9.59331e-10 exceeds the given relative tolerance times norm of integral above zero  (in 'unknown file name' at line 150)
> integrate(Vectorize(f_1_2),-10,0.67,t=t,A=A,v1=v1,v2=v2,s=s)$value
[1] 0.09634799

Here is some code with graphs in addition to the one I posted, if you can look into it, see if you can find an issue. The last one is a plot of rank_density.

N<-1000
x<-(1:N)/1000
ft<-rep(NA,N)
for (i in (1:N)) {ft[i]<-lba_cdf(x[i], b, A, v1, s)}
plot(x,ft)


N<-8000
x<-(1:N)/1000-1
ft<-rep(NA,N)
for (i in (1:N)) {ft[i]<-lbaX_pdf(x[i], t, A, v1, s)}
plot(x,ft)

N<-3000
x<-(1:N)/1000-1
ft<-rep(NA,N)
for (i in (1:N)) {ft[i]<-lbaX_pdf(x[i], t, A, v1, s)*lbaX_cdf(x[i], t, A, v1, s)}
plot(x,ft)

I do not know how to use the ODE integrator for such things, isn’t it meant for ordinary differential equations?