
Speed up population Bayesian inference by combining cross-chain warmup and
within-chain parallelization

YI ZHANG1 , WILLIAM R. GILLESPIE1 , BEN BALES2 , AKI VEHTARI3 1. METRUM RESEARCH GROUP, 2. COLUMBIA UNIVERSITY, 3. AALTO UNIVERSITY

OBJECTIVES
Automate Markov Chain Monte Carlo (MCMC) convergence assessment to adaptively transition from warmup to sampling.
Improve adaptive tuning of Hamiltonian Monte Carlo (HMC) parameters.
Speed up population model inference by combining new warmup method with within-chain parallelization[4][6].

CROSS-CHAIN WARMUP

Researchers have long been seeking a measure to evaluate MCMC warmup qual-
ity. A common practice of MCMC toolkits such as Stan[1] is to prescribe a fixed
number of warmup iterations, of which the efficiency/sufficiency is revealed only
at the end of simulation, through quantities such as potential scale reduction coeffi-
cients (R̂) and effective sample sizes (ESS)[5]. In general there is yet an established
method for dynamical warmup assessment before transitioning to post-warmup
sampling. For that we propose the following algorithm:

Aggregate chains
Update metric
Update stepsize
Check convergence

Aggregate chains
Update metric
Update stepsize
Check convergence

C
on

ve
rg

en
ce

 te
st

 p
as

se
d

Stepsize
adaptation

Stepsize
adaptation

Chain 1

Chain 2

Chain 3

Chain 4

Warmup Post-warmup
Sampling

Initial
buffer

Window 1 Window n Terminal
buffer

Figure 1: Proposed cross-chain warmup algorithm

1. With a fixed window size w, initiate warmup with stepsize adaptation.

2. At the end of a window, aggregate joint posterior probability from all the
chains and calculate corresponding R̂ and ESS. For example, with default
window size w = 100, when warmup reaches iteration 200, calculate R̂i and
ESSi for i = 1, 2, so that R̂1 and ESS1 are based on warmup iteration 1 to
200, and R̂2 and ESS2 are based on warmup iteration 101 to 200.

3. At the end of window n with predefined target value R̂0 and ESS0, from
1, . . . , n, select j with maximum ESSj and calculate a new metric using sam-
ples from corresponding windows. Determine convergence by checking if
R̂j < R̂0 and ESSj > ESS0. If converges, move to post-warmup sampling,
otherwise repeat step 2.

Benchmarks are performed with different target ESS and regular Stan run (1000
warmup iterations). We run each setup with 10 random seeds and collect average
(barplot) and standard deviation (error bar) of the following quantities.

total number of leapfrog integration steps in warmup
total number of leapfrog integration steps in sampling
number of leapfrog integration steps in per each warmup iteration
number of leapfrog integration steps in per each sampling iteration
minimum ESSbulk per iteration
minimum ESStail per iteration
minimum ESSbulk per leapfrog step
minimum ESStail per leapfrog step
maximum wall time (in seconds)

min(bulk_ESS/leapfrog) min(tail_ESS/iter) min(tail_ESS/leapfrog)

leapfrogs(warmup)/iter max(elapsed_time) min(bulk_ESS/iter)

leapfrogs(sampling) leapfrogs(sampling)/iter leapfrogs(warmup)

diag_e dense_e diag_e dense_e diag_e dense_e

0

10000

20000

30000

0.0
0.1
0.2
0.3
0.4
0.5

0.00

0.03

0.06

0.09

0

10

20

30

0.0

0.5

1.0

1.5

2.0

0.0

0.2

0.4

0.6

0

10000

20000

30000

0

10

20

30

0.00

0.02

0.04

0.06

0.08

metric

av
g

run
cross−chain: target ESS=100 cross−chain: target ESS=200

cross−chain: target ESS=400 regular

Figure 2: Cross-chain warmup performance: arK model[3]

min(bulk_ESS/leapfrog) min(tail_ESS/iter) min(tail_ESS/leapfrog)

leapfrogs(warmup)/iter max(elapsed_time) min(bulk_ESS/iter)

leapfrogs(sampling) leapfrogs(sampling)/iter leapfrogs(warmup)

diag_e dense_e diag_e dense_e diag_e dense_e

0

3000

6000

9000

0.0

0.1

0.2

0.3

0.4

0.00

0.02

0.04

0.06

0

3

6

9

12

0.00

0.03

0.06

0.09

0.12

0.0
0.1
0.2
0.3
0.4
0.5

0

3000

6000

9000

12000

0

5

10

0.00

0.02

0.04

metric
av

g

run
cross−chain: target ESS=100 cross−chain: target ESS=200

cross−chain: target ESS=400 regular

Figure 3: Cross-chain warmup performance: eight schools model[3]

min(bulk_ESS/leapfrog) min(tail_ESS/iter) min(tail_ESS/leapfrog)

leapfrogs(warmup)/iter max(elapsed_time) min(bulk_ESS/iter)

leapfrogs(sampling) leapfrogs(sampling)/iter leapfrogs(warmup)

diag_e dense_e diag_e dense_e diag_e dense_e

0

5000

10000

15000

0.0

0.1

0.2

0.3

0.00
0.01
0.02
0.03
0.04
0.05

0

5

10

15

0.0

0.1

0.2

0.0

0.1

0.2

0.3

0.4

0

5000

10000

15000

0

5

10

15

0.00

0.01

0.02

0.03

metric

av
g

run
cross−chain: target ESS=100 cross−chain: target ESS=200

cross−chain: target ESS=400 regular

Figure 4: Cross-chain warmup performance: sblrc-blr model[3]

min(bulk_ESS/leapfrog) min(tail_ESS/iter) min(tail_ESS/leapfrog)

leapfrogs(warmup)/iter max(elapsed_time) min(bulk_ESS/iter)

leapfrogs(sampling) leapfrogs(sampling)/iter leapfrogs(warmup)

diag_e dense_e diag_e dense_e diag_e dense_e

0

20000

40000

60000

0.0

0.2

0.4

0.6

0.00

0.03

0.06

0.09

0.12

0

20

40

60

0

20

40

60

80

0.0

0.2

0.4

0.6

0

20000

40000

60000

0

20

40

60

0.000

0.025

0.050

0.075

0.100

metric

av
g

run
cross−chain: target ESS=100 cross−chain: target ESS=200

cross−chain: target ESS=400 regular

Figure 5: Cross-chain warmup performance: SIR model[3]

MULTILEVEL PARALLELIZATION: CROSS-CHAIN WARMUP + WITHIN-CHAIN PARALLELIZATION

Method

Chain 1

Chain 2

Chain 3

Chain 4

process 1...k

process k+1...2k

process 2k+1...3k

process 3k+1...4k

ODE for subject 1...m

ODE for subject m+1...2m

ODE for subject km-m+1...km

process 3k+1

process 3k+2

process 4k

Evenly distributing a population of size m
to k processes

Chain 1

Chain 2

Chain 3

Chain 4

Warmup Post-warmup
Sampling

Initial

buffer

Window 1 Window n Terminal
buffer

Figure 6: Multilevel parallelism for population models based on ordinary differential
equations (ODE). A simplified version of Figure 1, the lower diagram shows the cross-
chain warmup through multiple windows. In within-chain parallelization, as shown in the
upper diagram, each chain has its own parameter samples (indicated by different colors),
and dedicated processes for solving the population model. Thus the parallel computing is
based on cross-chain level and within-chain level.

Level Parallel operation Parallel communication
1 Cross-chain warmup At the end of warmup windows
2 Within-chain parallel ODE solver During likelihhood evaluation

Table 1: A framework of multilevel parallelism for Bayesian inference of population models.

Example

We consider a time-to-event model for the time to the first grade 2+ periph-
eral neuropathy (PN) event in patients treated with an antibody-drug conju-
gate (ADC) delivering monomethyl auristatin E (MMAE). We call it Time-To-PN
(TTPN) model, and analyze data using a simplified version of the model reported
in [2]. We consider three treatment arms: fauxlatuzumab vedotin 1.2, 1.8 and 2.4
mg/kg IV boluses q3w x 6 doses, with 20 patients per treatment arm. In this
model, each patient’s PK is described by an effective compartment model (one-
compartment), and PD by a linear model. The likelihood for time to first 2+ PN
event is described by a hazard function that depends on the concentration effect
through Weibull distribution. Two unknowns from PK model and the cumula-
tive hazard form a three-component ODE system. Each evaluation of likelihood
requires solving this 3-system for every patient.
ODEs corresponding to the entire population are solved by a single call of Torsten
function pmx_solve_group_rk45. The three parameters of the Torsten model

are:

• ke0 in effective compartment model.

• α the coefficient of linear PD model.

• β Weibull distribution scale parameter.

Warmup quality

Table 2 shows cross-chain and regular run performance (target ESS = 400). Con-
sistent with the previous benchmark models, the cross-chain warmup reduces
total run time without compromising ESS, leading to 15% wall time improve-
ment.

Cross-chain Regular
leapfrogs(warmup) 1.002e+04 1.588e+04
leapfrogs(sampling) 1.709e+04 1.831e+04
leapfrogs(warmup)/iter 1.822e+01 1.588e+01
leapfrogs(sampling)/iter 1.709e+01 1.831e+01
min(bulk_ESS/iter) 2.805e-01 2.340e-01
min(tail_ESS/iter) 3.482e-01 3.205e-01
min(bulk_ESS/leapfrog) 1.641e-02 1.277e-02
min(tail_ESS/leapfrog) 2.037e-02 1.749e-02
max(elapsed_time) 1.702e+03 1.979e+03

Table 2: Cross-chain runs vs regular runs(target ESS=400)

Parallel speedup

Speedup is investigated by running the model with 4 chains using nproc =
4, 8, 16, 32, 60 processes. Equivalently, there are 1, 2, 4, 8, 15 processes per chain
for within-chain parallelization. With population size 60, this is also equivalent to
having each process handle the solution of 60, 30, 15, 8, 4 subjects’ ODE system,
respectively.

• Both muiltilevel and within-chain-only parallel runs scale near-linearly up
to 60 processes (15 processes per chain × 4 chains).

• In the range of nproc = 32, 60, 80, multilevel runs exhibit a steady ~20% per-
formance improvement, completely contributed by cross-chain warmup.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

warmup sample total

1 2 4 8 15 1 2 4 8 15 1 2 4 8 15

1

2

4

8

1

2

4

1

2

4

8

number of processes per chain

sp
ee

du
p

parallelization ● ●multilevel within−chain

Figure 7: Multilevel scheme parallel performance: TTPN model (target ESS=400). Wall
time speedup uses regular Stan run as reference. With all runs having 1000 post-warmup
sampling iterations, in multilevel runs the number of warmup iterations is determinted at
runtime, while both within-chain parallel runs and regular Stan runs have 1000 warmup
iterations. Among 4 chains in a run, we use the one with maximum total walltime(in sec-
onds) as performance measure, as in practice usually further model evaluation becomes
accessible only after all chains finish.

REFERENCES

[1] B. CARPENTER ET AL., Stan: A Probabilistic Programming Language, Journal of Statistical Software, 76 (2017),
pp. 1–32.

[2] D. LU ET AL., Time-to-Event Analysis of Polatuzumab Vedotin-Induced Peripheral Neuropathy to Assist in the Com-
parison of Clinical Dosing Regimens, CPT: pharmacometrics & systems pharmacology, 6 (2017), pp. 401–408.

[3] M. MAGNUSSON ET AL., A posterior database (PDB) for bayesian inference. https://github.com/MansMeg/
posteriordb.

[4] TORSTEN DEVELOPMENT TEAM, Torsten: library of C++ functions that support applications of Stan in Pharmacomet-
rics. https://github.com/metrumresearchgroup/Torsten.

[5] A. VEHTARI ET AL., Rank-normalization, folding, and localization: An improved R̂ for assessing convergence of
MCMC, arXiv:1903.08008 [stat], (2019). arXiv: 1903.08008.

[6] Y. ZHANG AND W. R. GILLESPIE, Poster: Speed up ode-based modeling using torstens population solvers, in StanCon
2019, Cambridge, UK, August 2019.

CONCLUSION
• Cross-chain warmup automates MCMC convergence assessment and

adaptive transition to sampling. It also produces comparable or even better
HMC tuning parameters. Benchmark shows the method is applicable to a
wide range of models.

• Multilevel parallelism significantly improves population model inference
performance.

SEE ALSO

github.com/metrumresearchgroup/acop_2020_torsten_parallelization

PRESENTED AT ACOP11 MEETING; 9 -13 NOVEMBER, 2020. COPIES AVAILABLE AT: WWW.METRUMRG.COM/PUBLICATIONS c⃝ METRUM RESEARCH GROUP 2020


