// NOTE: This is the same as SelfAdjustEigenSolver without // the automatic sorting of eigenvalues by magnitude. // // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud // Copyright (C) 2010 Jitse Niesen // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SELFADJOINTEIGENSOLVERNOSORT_H #define EIGEN_SELFADJOINTEIGENSOLVERNOSORT_H //#include "./Tridiagonalization.h" namespace Eigen { template class GeneralizedSelfAdjointEigenSolver; namespace internal { template struct direct_selfadjoint_eigenvalues; template ComputationInfo computeFromTridiagonalNosort_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec); } /** \eigenvalues_module \ingroup Eigenvalues_Module * * * \class SelfAdjointEigenSolver * * \brief Computes eigenvalues and eigenvectors of selfadjoint matrices * * \tparam _MatrixType the type of the matrix of which we are computing the * eigendecomposition; this is expected to be an instantiation of the Matrix * class template. * * A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real * matrices, this means that the matrix is symmetric: it equals its * transpose. This class computes the eigenvalues and eigenvectors of a * selfadjoint matrix. These are the scalars \f$ \lambda \f$ and vectors * \f$ v \f$ such that \f$ Av = \lambda v \f$. The eigenvalues of a * selfadjoint matrix are always real. If \f$ D \f$ is a diagonal matrix with * the eigenvalues on the diagonal, and \f$ V \f$ is a matrix with the * eigenvectors as its columns, then \f$ A = V D V^{-1} \f$ (for selfadjoint * matrices, the matrix \f$ V \f$ is always invertible). This is called the * eigendecomposition. * * The algorithm exploits the fact that the matrix is selfadjoint, making it * faster and more accurate than the general purpose eigenvalue algorithms * implemented in EigenSolver and ComplexEigenSolver. * * Only the \b lower \b triangular \b part of the input matrix is referenced. * * Call the function compute() to compute the eigenvalues and eigenvectors of * a given matrix. Alternatively, you can use the * SelfAdjointEigenSolver(const MatrixType&, int) constructor which computes * the eigenvalues and eigenvectors at construction time. Once the eigenvalue * and eigenvectors are computed, they can be retrieved with the eigenvalues() * and eigenvectors() functions. * * The documentation for SelfAdjointEigenSolver(const MatrixType&, int) * contains an example of the typical use of this class. * * To solve the \em generalized eigenvalue problem \f$ Av = \lambda Bv \f$ and * the likes, see the class GeneralizedSelfAdjointEigenSolver. * * \sa MatrixBase::eigenvalues(), class EigenSolver, class ComplexEigenSolver */ template class SelfAdjointEigenSolverNosort { public: typedef _MatrixType MatrixType; enum { Size = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; /** \brief Scalar type for matrices of type \p _MatrixType. */ typedef typename MatrixType::Scalar Scalar; typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 typedef Matrix EigenvectorsType; /** \brief Real scalar type for \p _MatrixType. * * This is just \c Scalar if #Scalar is real (e.g., \c float or * \c double), and the type of the real part of \c Scalar if #Scalar is * complex. */ typedef typename NumTraits::Real RealScalar; friend struct internal::direct_selfadjoint_eigenvalues::IsComplex>; /** \brief Type for vector of eigenvalues as returned by eigenvalues(). * * This is a column vector with entries of type #RealScalar. * The length of the vector is the size of \p _MatrixType. */ typedef typename internal::plain_col_type::type RealVectorType; typedef Tridiagonalization TridiagonalizationType; typedef typename TridiagonalizationType::SubDiagonalType SubDiagonalType; /** \brief Default constructor for fixed-size matrices. * * The default constructor is useful in cases in which the user intends to * perform decompositions via compute(). This constructor * can only be used if \p _MatrixType is a fixed-size matrix; use * SelfAdjointEigenSolver(Index) for dynamic-size matrices. * * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver.out */ EIGEN_DEVICE_FUNC SelfAdjointEigenSolverNosort() : m_eivec(), m_eivalues(), m_subdiag(), m_isInitialized(false) { } /** \brief Constructor, pre-allocates memory for dynamic-size matrices. * * \param [in] size Positive integer, size of the matrix whose * eigenvalues and eigenvectors will be computed. * * This constructor is useful for dynamic-size matrices, when the user * intends to perform decompositions via compute(). The \p size * parameter is only used as a hint. It is not an error to give a wrong * \p size, but it may impair performance. * * \sa compute() for an example */ EIGEN_DEVICE_FUNC explicit SelfAdjointEigenSolverNosort(Index size) : m_eivec(size, size), m_eivalues(size), m_subdiag(size > 1 ? size - 1 : 1), m_isInitialized(false) {} /** \brief Constructor; computes eigendecomposition of given matrix. * * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to * be computed. Only the lower triangular part of the matrix is referenced. * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. * * This constructor calls compute(const MatrixType&, int) to compute the * eigenvalues of the matrix \p matrix. The eigenvectors are computed if * \p options equals #ComputeEigenvectors. * * Example: \include SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp * Output: \verbinclude SelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.out * * \sa compute(const MatrixType&, int) */ template EIGEN_DEVICE_FUNC explicit SelfAdjointEigenSolverNosort(const EigenBase& matrix, int options = ComputeEigenvectors) : m_eivec(matrix.rows(), matrix.cols()), m_eivalues(matrix.cols()), m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1), m_isInitialized(false) { compute(matrix.derived(), options); } /** \brief Computes eigendecomposition of given matrix. * * \param[in] matrix Selfadjoint matrix whose eigendecomposition is to * be computed. Only the lower triangular part of the matrix is referenced. * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. * \returns Reference to \c *this * * This function computes the eigenvalues of \p matrix. The eigenvalues() * function can be used to retrieve them. If \p options equals #ComputeEigenvectors, * then the eigenvectors are also computed and can be retrieved by * calling eigenvectors(). * * This implementation uses a symmetric QR algorithm. The matrix is first * reduced to tridiagonal form using the Tridiagonalization class. The * tridiagonal matrix is then brought to diagonal form with implicit * symmetric QR steps with Wilkinson shift. Details can be found in * Section 8.3 of Golub \& Van Loan, %Matrix Computations. * * The cost of the computation is about \f$ 9n^3 \f$ if the eigenvectors * are required and \f$ 4n^3/3 \f$ if they are not required. * * This method reuses the memory in the SelfAdjointEigenSolver object that * was allocated when the object was constructed, if the size of the * matrix does not change. * * Example: \include SelfAdjointEigenSolver_compute_MatrixType.cpp * Output: \verbinclude SelfAdjointEigenSolver_compute_MatrixType.out * * \sa SelfAdjointEigenSolver(const MatrixType&, int) */ template EIGEN_DEVICE_FUNC SelfAdjointEigenSolverNosort& compute(const EigenBase& matrix, int options = ComputeEigenvectors); /** \brief Computes eigendecomposition of given matrix using a closed-form algorithm * * This is a variant of compute(const MatrixType&, int options) which * directly solves the underlying polynomial equation. * * Currently only 2x2 and 3x3 matrices for which the sizes are known at compile time are supported (e.g., Matrix3d). * * This method is usually significantly faster than the QR iterative algorithm * but it might also be less accurate. It is also worth noting that * for 3x3 matrices it involves trigonometric operations which are * not necessarily available for all scalar types. * * For the 3x3 case, we observed the following worst case relative error regarding the eigenvalues: * - double: 1e-8 * - float: 1e-3 * * \sa compute(const MatrixType&, int options) */ EIGEN_DEVICE_FUNC SelfAdjointEigenSolverNosort& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors); /** *\brief Computes the eigen decomposition from a tridiagonal symmetric matrix * * \param[in] diag The vector containing the diagonal of the matrix. * \param[in] subdiag The subdiagonal of the matrix. * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly. * \returns Reference to \c *this * * This function assumes that the matrix has been reduced to tridiagonal form. * * \sa compute(const MatrixType&, int) for more information */ SelfAdjointEigenSolverNosort& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options=ComputeEigenvectors); /** \brief Returns the eigenvectors of given matrix. * * \returns A const reference to the matrix whose columns are the eigenvectors. * * \pre The eigenvectors have been computed before. * * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The * eigenvectors are normalized to have (Euclidean) norm equal to one. If * this object was used to solve the eigenproblem for the selfadjoint * matrix \f$ A \f$, then the matrix returned by this function is the * matrix \f$ V \f$ in the eigendecomposition \f$ A = V D V^{-1} \f$. * * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out * * \sa eigenvalues() */ EIGEN_DEVICE_FUNC const EigenvectorsType& eigenvectors() const { eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); return m_eivec; } /** \brief Returns the eigenvalues of given matrix. * * \returns A const reference to the column vector containing the eigenvalues. * * \pre The eigenvalues have been computed before. * * The eigenvalues are repeated according to their algebraic multiplicity, * so there are as many eigenvalues as rows in the matrix. The eigenvalues * are sorted in increasing order. * * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out * * \sa eigenvectors(), MatrixBase::eigenvalues() */ EIGEN_DEVICE_FUNC const RealVectorType& eigenvalues() const { eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); return m_eivalues; } /** \brief Computes the positive-definite square root of the matrix. * * \returns the positive-definite square root of the matrix * * \pre The eigenvalues and eigenvectors of a positive-definite matrix * have been computed before. * * The square root of a positive-definite matrix \f$ A \f$ is the * positive-definite matrix whose square equals \f$ A \f$. This function * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$. * * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out * * \sa operatorInverseSqrt(), MatrixFunctions Module */ EIGEN_DEVICE_FUNC MatrixType operatorSqrt() const { eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint(); } /** \brief Computes the inverse square root of the matrix. * * \returns the inverse positive-definite square root of the matrix * * \pre The eigenvalues and eigenvectors of a positive-definite matrix * have been computed before. * * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is * cheaper than first computing the square root with operatorSqrt() and * then its inverse with MatrixBase::inverse(). * * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out * * \sa operatorSqrt(), MatrixBase::inverse(), MatrixFunctions Module */ EIGEN_DEVICE_FUNC MatrixType operatorInverseSqrt() const { eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint(); } /** \brief Reports whether previous computation was successful. * * \returns \c Success if computation was succesful, \c NoConvergence otherwise. */ EIGEN_DEVICE_FUNC ComputationInfo info() const { eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized."); return m_info; } /** \brief Maximum number of iterations. * * The algorithm terminates if it does not converge within m_maxIterations * n iterations, where n * denotes the size of the matrix. This value is currently set to 30 (copied from LAPACK). */ static const int m_maxIterations = 30; protected: static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); } EigenvectorsType m_eivec; RealVectorType m_eivalues; typename TridiagonalizationType::SubDiagonalType m_subdiag; ComputationInfo m_info; bool m_isInitialized; bool m_eigenvectorsOk; }; namespace internal { /** \internal * * \eigenvalues_module \ingroup Eigenvalues_Module * * Performs a QR step on a tridiagonal symmetric matrix represented as a * pair of two vectors \a diag and \a subdiag. * * \param diag the diagonal part of the input selfadjoint tridiagonal matrix * \param subdiag the sub-diagonal part of the input selfadjoint tridiagonal matrix * \param start starting index of the submatrix to work on * \param end last+1 index of the submatrix to work on * \param matrixQ pointer to the column-major matrix holding the eigenvectors, can be 0 * \param n size of the input matrix * * For compilation efficiency reasons, this procedure does not use eigen expression * for its arguments. * * Implemented from Golub's "Matrix Computations", algorithm 8.3.2: * "implicit symmetric QR step with Wilkinson shift" */ template EIGEN_DEVICE_FUNC static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end, Scalar* matrixQ, Index n); } template template EIGEN_DEVICE_FUNC SelfAdjointEigenSolverNosort& SelfAdjointEigenSolverNosort ::compute(const EigenBase& a_matrix, int options) { check_template_parameters(); const InputType &matrix(a_matrix.derived()); using std::abs; eigen_assert(matrix.cols() == matrix.rows()); eigen_assert((options&~(EigVecMask|GenEigMask))==0 && (options&EigVecMask)!=EigVecMask && "invalid option parameter"); bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; Index n = matrix.cols(); m_eivalues.resize(n,1); if(n==1) { m_eivec = matrix; m_eivalues.coeffRef(0,0) = numext::real(m_eivec.coeff(0,0)); if(computeEigenvectors) m_eivec.setOnes(n,n); m_info = Success; m_isInitialized = true; m_eigenvectorsOk = computeEigenvectors; return *this; } // declare some aliases RealVectorType& diag = m_eivalues; EigenvectorsType& mat = m_eivec; // map the matrix coefficients to [-1:1] to avoid over- and underflow. mat = matrix.template triangularView(); RealScalar scale = mat.cwiseAbs().maxCoeff(); if(scale==RealScalar(0)) scale = RealScalar(1); mat.template triangularView() /= scale; m_subdiag.resize(n-1); internal::tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors); m_info = internal::computeFromTridiagonalNosort_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); // scale back the eigen values m_eivalues *= scale; m_isInitialized = true; m_eigenvectorsOk = computeEigenvectors; return *this; } template SelfAdjointEigenSolverNosort& SelfAdjointEigenSolverNosort ::computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag , int options) { //TODO : Add an option to scale the values beforehand bool computeEigenvectors = (options&ComputeEigenvectors)==ComputeEigenvectors; m_eivalues = diag; m_subdiag = subdiag; if (computeEigenvectors) { m_eivec.setIdentity(diag.size(), diag.size()); } m_info = internal::computeFromTridiagonalNosort_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec); m_isInitialized = true; m_eigenvectorsOk = computeEigenvectors; return *this; } namespace internal { /** * \internal * \brief Compute the eigendecomposition from a tridiagonal matrix * * \param[in,out] diag : On input, the diagonal of the matrix, on output the eigenvalues * \param[in,out] subdiag : The subdiagonal part of the matrix (entries are modified during the decomposition) * \param[in] maxIterations : the maximum number of iterations * \param[in] computeEigenvectors : whether the eigenvectors have to be computed or not * \param[out] eivec : The matrix to store the eigenvectors if computeEigenvectors==true. Must be allocated on input. * \returns \c Success or \c NoConvergence */ template ComputationInfo computeFromTridiagonalNosort_impl(DiagType& diag, SubDiagType& subdiag, const Index maxIterations, bool computeEigenvectors, MatrixType& eivec) { using std::abs; ComputationInfo info; typedef typename MatrixType::Scalar Scalar; Index n = diag.size(); Index end = n-1; Index start = 0; Index iter = 0; // total number of iterations typedef typename DiagType::RealScalar RealScalar; const RealScalar considerAsZero = (std::numeric_limits::min)(); const RealScalar precision = RealScalar(2)*NumTraits::epsilon(); while (end>0) { for (Index i = start; i0 && subdiag[end-1]==RealScalar(0)) { end--; } if (end<=0) break; // if we spent too many iterations, we give up iter++; if(iter > maxIterations * n) break; start = end - 1; while (start>0 && subdiag[start-1]!=0) start--; internal::tridiagonal_qr_step(diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n); } if (iter <= maxIterations * n) info = Success; else info = NoConvergence; return info; } } // end namespace internal } // end namespace Eigen #endif // EIGEN_SELFADJOINTEIGENSOLVERNOSORT_H