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CHAPTER 5

Logistic regression

Logistic regression is the standard way to model binary outcomes (that is, data
y; that take on the values 0 or 1). Section 5.1 introduces logistic regression in a
simple example with one predictor, then for most of the rest of the chapter we work
through an extended example with multiple predictors and interactions.

5.1 Logistic regression with a single predictor
Ezample: modeling political preference given income

Conservative parties generally receive more support among voters with higher in-
comes. We illustrate classical logistic regression with a simple analysis of this pat-
tern from the National Election Study in 1992. For each respondent i in this poll,
we label y; = 1 if he or she preferred George Bush (the Republican candidate for
president) or 0 if he or she preferred Bill Clinton (the Democratic candidate), for
now excluding respondents who preferred Ross Perot or other candidates, or had
no opinion. We predict preferences given the respondent’s income level, which is
characterized on a five-point scale.!

The data are shown as (jittered) dots in Figure 5.1, along with the fitted logistic
regression line, a curve that is constrained to lie between 0 and 1. We interpret the
line as the probability that y = 1 given z—in mathematical notation, Pr(y = 1|z).

We fit and display the logistic regression using the following R function calls:

fit.1 <- gln (vote - income, family=binomial(link="logit"))
dis_play (fit.1)
to yield
coef .est coef.se
(Intercept) -1.40  0.19
income 0.33 0.06
n = 1179, k = 2
residual deviance = 15656.9, null deviance = 1691.2 (difference = 34.3)
The fitted model is Pr(y; = 1) = logit™'(—1.40 + 0.33 - income). We shall define
this model mathematically and then return to discuss its interpretation.

The logistic regression model
It would not make sense to fit the continuous linear regression model, X 3 + error,
to data y that take on the values 0 and 1. Instead, we model the probability that
y=1

’ Pr(y: = 1) = logit™"(Xi), (5.1)
under the assumption that the outcomes y; are independent given these probabili-
ties. We refer to X 3 as the linear predictor.

! See Section 4.7 for details on the income categories and other variables measured in this survey.
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Figure 5.1 Logistic regression estimating the probability of supporting George
1992 presidential election, as a function of discretized income !eﬂel. S
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The inverse-logistic function is curved, and so the expected difference in y corre-

sponding to a fixed difference in z is not a constant, As can be seen in Figure 5.2,
the steepest change occurs at the middle of the curve, For example:

o logit(0.5) = 0, and logit(0.6) = 0.4, Here, adding 0.4 on the logit scale corre-
sponds to a change from 50% to 60% on the probability scale.

* logi_t{ﬁ.g} = 2.2, and logit(0.93) = 2.6, Here, adding 0.4 on the logit scale corre-
sponds to a change from 90% to 93% on the probability scale.

Similarly, adding 0.4 at the low end of the scale moves a probability from 7% to
10%. In general, any particular change on the logit scale is compressed at the ends

of ;he probability scale, which is needed to keep probabilities bounded between 0
and 1.

5.2 Interpreting the logistic regression coefficients

Coefficients in logistic regression can be challenging to interpret because of the
nonlinearity just noted. We shall try to generalize the procedure for understanding
coefficients one at a time, as was done for linear regression in Chapter 3. We illus-
trate with the model, Pr(Bush support) = logit™'(—1.40 + 0.33 - income). Figure
5.1 shows the story, but we would also like numerical summaries. We present some

simple approaches here and return in Section 5.7 to more comprehensive numerical
summaries.

Evaluation at and near the mean of the data

The curve of the logistic function requires us to choose where to evaluate changes,

if we want to interpret on the probability scale. The mean of the input variables in

the data is often a useful starting point.

o As with linear regression, the intercept can only be interpreted assuming zero val-

ues for the other predictors. When zero is not interesting or not even in the model

(as in the voting example, where income is on a 1-5 scale), the intercept must be
evaluated at some other point. For example, we can evaluate Pr(Bush support)
at the central income category and get logit™" (—1.40 + 0.33 - 3) = 0.40.

Or we can evaluate Pr(Bush support) at the mean of respondents’ incomes:
logit™!(—1.40 + 0.33 - ); in R we code this as’

- dnvlogit (-1.40 + 0.33#mean (income)) R code
or, more generally,
invlogit (coef(fit.1)[1] + coef (fit.1) [2] *mean(income)) R code

For this dataset, 7 = 3.1, yielding Pr(Bush support) = 0.40 at this central point.

* A difference of 1 in income (on this 1-5 scale) corresponds to a positive difference
of 0.33 in the logit probability of supporting Bush. There are two convenient ways
to summarize this directly in terms of probabilities.

' eval ili i i it difference in x near

B he probability differs with a unit nea
::: g::tral vﬁﬁi h;izc:; ; E)_- 3.1 in this example, we can evaluate the logistic
regression functir:;n at ¢ = 3 and = 2; the difference ;‘n Pr(y = 1) correspond-
ing to adding 1 to x is logit'1(—-1.4{J+0.33-3]—lugi£' (—1.4040.33-2) = 0.08.

i - tion (x) {1/(1+exp(-x))}.
¥ We are using a function we have written, invlogit <- func
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function logit™!(a + ) with respect t0 T Yld?fi 3.1is —1.40+0.33
value of the linear predictor at the ﬁentral“va.lue of & Priy—1) per sui8
—0.39, and the slope of the curve—the “change” 1n

~0.39)2 — (.13.
of “change” in z—at this point is 0.33¢%%%/(1+e€ ) ! 0:: =g

— For this example, the difference on the Probablllj:r scale is t ﬁjr
of 0.13 (to one decimal place); this is typical .but-. in some cases i
difference is large, the differencing and the derivative can give shghtr £
answers. They will always be the same sign, however.
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The “divide by 4 rule”

The logistic curve is steepest at its center, at which point & + Gz =
logit™*(a+ Bz) = 0.5 (see Figure 5.2). The slope of the curve—the deri
logistic function—is maximized at this point and attains the value Be°/
B/4. Thus, 3/4 is the maximum difference in Pr(y = 1) corresponding
difference in x. sind
As a rule of convenience, we can take logistic regression coefficients
the constant term) and divide them by 4 to get an upper bound of the
difference corresponding to a unit difference in . This upper bound is a r
approximation near the midpoint of the logistic curve, where proba.bﬂ]m
to 0.5. -
For example, in the model Pr(Bush support) = Logit‘l(_l‘m +0.33
we can divide 0.33/4 to get 0.08: a difference of 1 in income cateoe 3
to no more than an 8% positive difference in the probability
Because the data in this case actually lie near the 50%
“divide by 4” approximation turns out to be close to 0.
at the central point of the data.
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Interpretation of coefficients as odds ratios

Another way to interpret logistic re i ) L _
If two outcomes have the prﬁabﬂitﬁ:}f j;;{?::::tsf?lm terms of
An odds of 1 is equivalent to a probability of u-é-thaf /(1-p)is callec
Odds of 0.5 or 2.0 represent probabilities of (1/3 2/3 is, eq'-'ﬂ“!i: hlmiy
thus, (p1/(1 — P1))/(P2/(1 ~ p2))—is called an oqy ). The ratio of tw
2 corresponds to a change from p = 0,33 ¢, S ratio. Thus, an o

p=0.67. P = 0.5, or a change from p =

probability to 8/9, and so forth,
Exponentiated logistic regressio

n :
For simplicity, we illustrate with coeffic

& mode] with 0.‘:’:1 be ml'pret,ed as odds ratios-

log (EE@:_L@ dictor, so that
r(y = Glsr}) =a+ 8.
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Figure 5.3 mﬁ"" representing uncertainty in an estimated regression coefficient (re-
peated from page 40). The range of this distribution corresponds to the possible values of 3
that are consistent with the data. When using this as an uncertainty distribution, we assign
an approzimate 68% chance that B will lie within 1 standard error of the point estimate,
8, and an approzimate 95% chance that 3 will lie within 2 standard errors. Assuming the
regression model is corvect, it should happen only about 5% of the time that the estimate,

B, falls more than 2 standard errors away from the true 3.

Adding 1 to z (that is, changing x to z+1 in (5.3)) has the effect of adding /3 to both

sides of the equation. Exponentiating both sides, the odds are then multiplied by €.
For example, if 8 = 0.2, then a unit difference in  corresponds to a multiplicative
change of %2 = 1.22 in the odds (for example, changing the odds from 1 to 1.22,
or changing p from 0.5 to 0.55).

We find that the concept of odds can be somewhat difficult to understand, and
odds ratios are even more obscure. Therefore we prefer to interpret coefficients on
the original scale of the data when possible, for example, saying that adding 0.2 on
the logit scale corresponds to a change in probability from logit~*(0) to logit ~(0.2).

Inference

Coefficient estimates and standard errors. The coefficients in classical logistic re-
gression are estimated using maximum likelihood, a procedure that can often work
well for models with few predictors fit to reasonably large samples (but see Section
5.8 for a potential problem).

As with the linear model, the standard errors represent estimation uncertainty.
We can roughly say that coefficient estimates within 2 standard errors of 3 are con-
sistent with the data. Figure 5.3 shows the normal distribution that approximately
represents the range of possible values of 3. For the voting example, the coefficient
of income has an estimate ,5‘ of 0.33 and a standard error of 0.06; thus the data are
roughly consistent with values of 3 in the range [0.33 + 2-0.06] = [0.21,0.45].

Statistical significance. As with linear regression, a coefficient is considered “sta-
tistically significant” if it is at least 2 standard errors away from zero. In the voting
example, the coefficient of income is statistically significant and positive, meaning
that we can be fairly certain that, in the population represented by th;is survey, posi-
tive differences in income generally correspond to positive (not negative) differences
in the probability of supporting Bush for president. ) g

Also as with linear regression, we usually do not try to interpret the statistical
significance of the intercept. The sign of an intercept is not generally of any interest,
and 8o it is usually meaningless to compare it to zero or worry about whether it is
statistically significantly different from zero. -~ :

Finally, when considering multiple inputs, we follow the same j}l'll.lmp.]&i as v_'.'zth

near regression when deciding when and how to include and combine inputs in a
model, as discussed in Section 4.6.




