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a b s t r a c t

From a Bayesian perspective, we propose a general method for analyzing a combination
of continuous, ordinal (including binary), and categorical/nominal multivariate measures
with missing values. We assume multivariate normal linear regression models for multi-
variate continuous measures, multivariate probit models for correlated ordinal measures,
and multivariate multinomial probit models for multivariate categorical/nominal mea-
sures. Then we assume a multivariate normal linear model on the continuous vector com-
prised of continuous variables and those underlying normal variables for ordinal variables
from multivariate probit models and for categorical variables from multinomial probit
models. We develop a Markov chain Monte Carlo (MCMC) algorithm to estimate unknown
parameters including regression parameters, cut-points for ordinal data from the multi-
variate probit models, and the covariance matrix encompassing both continuous variables
and the underlying normal latent variables. Combining the continuous variables and the
normal latent variables allows us to model combinations of continuous, ordinal, and cat-
egorical multivariate data simultaneously. The framework incorporates flexible priors for
the covariance matrix, provides a foundation for inference about the underlying covari-
ance structure, and imputes missing data where needed. Themethod is illustrated through
simulated examples and two real data applications.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Multivariate measures and longitudinal data arise in many fields of science. There is a long history of methodological
development for analyzingmultivariate continuous data from both classical and Bayesian perspectives, e.g. [31,63,34,62,15,
59,11].

Statistical methods for analyzing multivariate ordinal (or polytomous) data including multivariate binary (or dichoto-
mous) data have also been established. Generalized estimating equations (GEE) methods have propelled the development
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of classical methods for analyzingmultivariate ordinal data, such as Zeger and Liang [66], Liang and Zeger [35], Prentice [52],
Miller et al. [45], Qu et al. [53]. From a Bayesian perspective, Chib and Greenberg [9], Nandram and Chen [48], Liu [38], and
Edwards and Allenby [18] analyzed multivariate ordinal data in the setting of the multivariate probit model.

Compared with multivariate continuous data and multivariate ordinal data, analyzing multivariate nominal categorical
data is much less familiar. Liang et al. [36] performed multivariate regression analyses for categorical data using GEE with
intensive computation. The multinomial probit model, which was developed for univariate nominal categorical data, has
been generalized to themultinomialmultiperiod probitmodel formultiple categorical data, e.g., [42,22,23,55,27]. To release
the restriction on the covariance matrix of the multinomial multiperiod probit model and to generalize the multinomial
probit model, Zhang et al. [69] proposed the multivariate multinomial probit model for multivariate nominal data with the
multinomial probit model as a special case.

In practice, sometimes it is inevitable to analyze mixtures of multivariate continuous, ordinal and nominal measures, or
various combinations of these three types of measures. This research field can be in general divided into several branches:
(1) joint modeling using direct likelihood estimation and GEE methods; (2) joint modeling using general location models;
(3) latent variable models (structural equation modeling, Bayesian latent variable models); (4) Other alternatives.

Joint modeling methods are to derive the joint distributions of the mixed outcomes and then to use GEE or quasi-
likelihood methods to make statistical inference. Related references can be found in [6,54,24]. Modeling mixed measures
using GEE include Zeger et al. [67], Legler et al. [33], and Spiess [61].

The general locationmodel Olkin and Tate [50] has been popularized in analyzingmixed continuous and categorical data
through specifyingmultinomialmodels for categorical variables and conditionalmultivariate normalmodels for continuous
variables with different means across cells from those categorical variables and a common covariance matrix across cells.
Using the general locationmodel to analyzemixedmeasurements can be found in [37,19,59,13]. Liu and Rubin [39] extended
the common covariancematrix to allow different, but proportional covariancematrices and replace themultivariate normal
distribution specified for continuous variables by multivariate t distribution.

The structural equation model [30,47] has also been a popular tool to analyze mixed measures, as has path analysis [7],
which refers to a similar use of linear models without latent variables. It assumes a continuous latent variable underlying
several observed measures describing a common concept. The linear equation links the latent variable and the observed
variables, i.e., factor analysis model is assumed for latent variables and the observed variables. Using the structural equation
models to analyze mixed data types can be referred to Muthén [47], Arminger and Küsters [2], Shi and Lee [60], Lee and
Zhu [32].

Using latent variable models is another active area for analyzing mixed measurement. Sammel et al. [58] proposed a
latent variablemixed effects model by assuming a latent variable, linearly linked to the observed covariates, for each subject
and the distribution for each type of measurement given the latent variable is from an exponential family. EM algorithm
is applied to estimate the unknown parameters and the latent variables. Dunson [17] proposed Bayesian latent variable
models for clustered mixed outcomes. The outcomes and the latent variables are linked through a known function and the
latent variables are assumed to follow an exponential family. Adding random effect variables into themeans of the specified
exponential distribution accounts the correlated structure formixed outcomes. Bayesian sampling algorithm can be derived
to make statistical inference. Moustaki and Knott [46] proposed a latent trait model for various type of measurements. They
assumed the distributions for mixed measurements given the latent variables are from the exponential family and estimate
the unknown parameters and the latent variables using the maximum likelihood method. O’Malley et al. [51] combined the
general location model and the latent trait model for mixed outcomes. Daniels and Normand [12] added latent variables
to the model through the mean functions to estimate the correlations among different types of measurements. Goldstein
et al. [25] proposed multilevel models for mixed data types. Weiss et al. [64] analyzed mixed outcomes through assuming
various exponential distributions based on the type of the outcomes and then linearly linked the unknown mean functions
with random effect variables to count for the correlated structure.

Besides the above general areas for analyzing the mixed measurements, there are other alternative methods, such as
Miglioretti [44] used latent transition regression models for mixed outcomes and de Leon and Wu [14] proposed a copula-
based regression models for a bivariate mixed outcome.

In this manuscript, we propose a joint modeling method using latent variables for mixed measures analyzed from a
Bayesian perspective. We assume themultivariate probit model for multivariate ordinal (including binary) data. This means
that there is an underlying normal latent variable for each ordinal outcome.We further assume themultivariatemultinomial
probit model for multivariate nominal data, where for each nominal outcome with p levels, there would be p − 1 normal
latent variables. The multivariate multinomial probit model generalizes the multinomial probit model for the univariate
nominal data. Detailed discussion about the multivariate multinomial probit model can be referred to Zhang et al. [69].
Then we combine these latent variables frommultivariate ordinal and nominal measures with the multivariate continuous
measures. We assume a multivariate linear model on those combined latent variables and the continuous measures and
develop an MCMC algorithm to estimate the unknown parameters including the covariance matrix for the latent variables
and the normal continuous variables.

Statistical methods for incomplete mixed data types are not well developed in the literature, and our paper offers ex-
panded flexibility and generality. Although GEEmethods could be considered in the present context, our proposed approach
provides a foundation for drawing inferences relevant to the correlation structure of the data, and as such arguably repre-
sents an advance over GEE as well. Whereas Zhang et al. [69] describes an incomplete-datamethod formultivariate nominal
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data and Boscardin et al. [5] describes an incomplete-data method for a combination of continuous and ordinal (or binary)
data, the present paper includes all of these data types (i.e., continuous, ordinal, and nominal). Our proposed method is able
to extend joint modelingmethods to general types of mixedmeasures and allows us to directly estimate the covariancema-
trix for latent variables. This contrasts with previously joint modeling methods targeted special types of mixed outcomes
and latent variable methods for modeling the dependence structures purpose and do not allow straightforward inference
for the covariance structure of the mixed measures.

Missing values in mixed measures have been considered by Little and Schluchter [37], Fitzmaurice and Laird [19], and
Schafer [59]. Sincemissing values are ubiquitous in data sets from almost every scientific field, we also considermissing data
in our model and the imputation steps for missing data are naturally built in and carried through the MCMC sampling algo-
rithm. In this sequel, we assume the missing data mechanism is missing at random (MAR). Although one cannot regard this
assumption as automatically valid,MAR is plausible inmany settings and provides a foundation for general-purpose analysis
procedures that can often be adapted to scenarios where a particular non-ignorable missing-data mechanism is assumed.

Our paper proceeds as follows. Section 2 gives relevant background on multivariate probit models, multinomial probit
models, andmultivariatemultinomial probit models. In Section 3, we present a jointmodel that combines these elements as
an associated Bayesian sampling algorithm. We use simulated examples (Section 4) and two real data examples (Sections 5
and 6) to illustrate our methodology. Section 7 includes discussion about the advantages and disadvantages for our method
and proposes possible future work in this area.

2. Background review

2.1. Probit model and multivariate probit model

The idea of using a generalized linear model with a probit link function was introduced by Bliss [4] for binary or ordinal
measurements. Albert and Chib [1] presented a Bayesian sampling method to estimate the probit model for independent
binary and ordinal random variables. What follows is a brief review for probit model.

Suppose there are N independent binary variables Y1, Y2, . . . , YN with values 0 or 1, where each Yi for i = 1, . . . ,N has a
Bernoulli distribution with the mean equal to pi. If pi = Φ(Xiβ), where Φ(·) is the cumulative function for standard normal
distribution, Xi is a vector for observed covariates, and β is the vector for unknown regression parameters, then this model
for Yi is called a probit model. Probit model can also be described as

Yi =


0 if Zi ≤ 0
1 if Zi > 0 (1)

where Zi follows standard normal distribution with mean Xiβ and variance 1, denoted by N(Xiβ, 1).
ForN independent ordinal variables Y1, Y2, . . . , YN with possible J ordered categories, 1, . . . , J , let pij = P(Yi = j) and the

cumulative probabilitiesηij = Σ
j
k=1pik. Then the probitmodel assumesηij = Φ(γj−Xiβ), where γj for j = 0, 1, . . . , J are cut-

points. Furthermore, if we assume that a latent continuous variable Zi follows N(Xiβ, 1), such that Yi = j if γj−1 < Zi ≤ γj
(we define that γ0 = −∞ and γJ = ∞). For parameter identification, without loss of generality, we let γ1 = 0. Then
the probit model for binary data is just a special case for ordinal data with γ0 = −∞, γ1 = 0, γ2 = ∞. The unknown
parameters for ordinal data include both the regression parameters β as well as the cut-points γj, j = 2, . . . , J − 1 for
more than two categories. Since binary variables are special cases for ordinal variables with two categories, therefore, the
following presentation uses the terminology for ordinal random variables.

Ashford and Sowden [3] extended the probit model from independent univariate Yi to independent multivariate Yi =

(Yi1, . . . , YiK )T such thatYi1, . . . , YiK are correlated ordinal variableswith J categories. For eachYik, i = 1, . . . ,N, k = 1, . . . ,
K , the probit model is assumed such that the cumulative probabilities ηikj =

j
l=1 P(Yik = l) = Φ(γkj − Xikβ), i.e., Yik = j

if γk(j−1) < Zik ≤ γkj, where Zik follows N(Xikβ, 1). Since Yi1, . . . , YiK are correlated, it is natural to assume that Zi1, . . . , ZiK
are correlated, too. We use Σ to denote the covariance matrix for Zi = (Zi1, . . . , ZiK ). Since each Zik is from N(Xikβ, 1),
the variance of Zik is equal to 1 and therefore, Σ is a correlation matrix, sometimes called a polychoric correlation matrix
Drasgow [16], instead of a covariance matrix. Further details can be referred to Chib and Greenberg [9], which is one of the
precursors of Bayesian analysis of multivariate probit models for correlated binary outcomes.

2.2. Multinomial probit (MNP) model

Building on the work by McFadden [43], Hajivassiliou et al. [28], Geweke et al. [21], Albert and Chib [1], McCulloch and
Rossi [42], andNobile [49], themultinomial probit (MNP)model has generated renewed interest in the fields of both statistics
and economics.

Let i = 1, 2, . . . , n index subjects and j = 1, 2, . . . , p index levels of a multinomial outcome with p levels, let yij = 1 if
subject ihas outcome j and yij = 0 otherwise. Let yi = (yi1, . . . , yip) be amultinomial 1×p vector.More compactly,we define
d = (d1, . . . , dn)T , where di contains the index of the chosen alternative, i.e., di = j if yij = 1. To understand the notation,
suppose we have n = 2 persons and each person choose one color from RED, YELLOW, and GREEN, i.e., p = 3. If the first
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person chooses RED, then y11 = 1, y12 = 0, y13 = 0, therefore have y1 = (y11, y12, y13) = (1, 0, 0) and d1 = 1. Similarly, if
the second person chooses GREEN, we have y2 = (y21, y22, y23) = (0, 0, 1) and d2 = 3. Then we have d = (d1, d2) = (1, 3).

Following the notation in economics settings where utilities underlie choices, the MNP model assumes that there is
a latent 1 × p vector ui = (ui1, . . . , uip) underlying each multinomial vector yi, such that the multinomial outcome is
determined by themaximum uij, as would happen if the subject chooses the alternative with maximum utility score. That is

di = j ⇔ uij ≥ max
1≤l≤p

uil. (2)

The MNP model further assumes that the vector ui follows a multivariate normal distribution with mean equal to Aiβ
and covariance matrix equal to V , where Ai is a p × k covariate matrix for subject i and β is a k × 1 regression parameter
vector. With this notation,

ui = Aiβ + µi (3)

where µi ∼ N(0, V ).
There are two identification problems in the above MNP model specification. The first identification problem is that

the distribution of vector d is unchanged by adding any arbitrary constant to both sides of Eq. (3) and usually solved by
subtracting the p-th row of Eq. (3) from the first (p − 1) rows. The model becomes

zi = Xiβ + ϵi (4)

where ϵi ∼ N(0, Σ) independently, zij = uij − uip, Xij = Aij − Aip, ϵij = µij − µip and Σ = [Ip−1, −1p−1]V [Ip−1, −1p−1]
T ,

with Is denoting the s × s identity matrix and 1s a vector of length s comprised of 1’s.
However, the model is still unidentified with multiplication of any positive constant to both sides of Eq. (4). This identifi-

cation problem can be solved by restricting the first element of Σ , σ11, to be equal 1. This strategy is also used by McCulloch
et al. [41]. Thus, the fully identifiable MNP model can be described as follows:

di =

0 if max
1≤l≤p−1

zil < 0

j if max
1≤l≤p−1

zil = zij > 0 (5)

where zi ∼ N(Xiβ, Σ) and σ11 = 1.
Notice that the dimension of zi is p − 1 instead of p.

2.3. Multivariate multinomial probit (MVMNP) model

TheMNPmodel is for the univariate categorical response, i.e., each subject has one categorical outcome and this categor-
ical outcome has p levels or categories. Extensions of MNP models to multiple categorical measures have been investigated
from several perspectives. Generalizing multiple nominal measures to multiple time points has been extensively studied by
McCulloch andRossi [42], Geweke et al. [22,23], Chen andKuo [8], and Ziegler [70]; Rendtel andKaltenborn [55],with limited
covariancematrix for the latent variable to facilitate the computation. Liang and Zeger [34], Zeger and Liang [66], Zeger [65],
and Liang et al. [36] used GEE methods treating correlation matrices as nuisance parameters. Golob and Regan [26] pro-
posed the generalized least-squares approach, forcing the magnitudes of each latent variables to be equal and this may not
be appropriate without any knowledge of the latent variables. The multivariate multinomial probit model (MVMNP) pro-
posed by Zhang et al. [69] extended the multinomial probit model and allows general covariance matrix specification. Let
us introduce the MVMNP model.

Suppose for each subject i, there are g nominal measures, the first with p1 levels, the next with p2 levels, and so on up
to the last with pg levels. Let di = (di1, . . . , dig) denote the index vector of the alternatives the ith subject chooses for the g
measures. Assume each of these g nominal measures follows a multinomial probit model. This is, for the q-th measure, q =

1, . . . , g , there is a (pq−1)-dimensional underlying utility vector ziq satisfying Eq. (5)withmean equal toXiqβ and covariance
matrix equal to Σq with the first element σq(1, 1) = 1.

Then we stack up all the utility vectors ziq for q = 1, . . . , g to be ziT = (zi1, . . . , zig) with ziq = (ziq1, . . . , ziq(pq−1)). The
MVMNP model for the g measures can be described as follows:

zi = Xiβ + ϵi (6)

where Xi = (XT
i1, . . . , X

T
ig)

T and ϵi ∼ N(0, Σ) with σqq = 1, where q = 1, p1, . . . , p1 + p2 + · · · + pg−1 − g − 1. We then
specify

diqj =


0 if max

1≤l≤pq−1
ziql < 0

j if max
1≤l≤pq−1

ziql = ziqj > 0

for i = 1, . . . , n, q = 1, . . . , g , and j = 1, . . . , pq − 1.
We can see that comparing the MNP model, the MVMNP model assumes a MNP model for each nominal outcome and

describes the correlated structure among multiple measurements through one covariance matrix for all the latent utility
scores with restrictions on the first element of each covariance matrix from the MNPmodel due to the model identification.
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3. Modeling and sampling mixtures of continuous, ordinal and nominal measures

3.1. Modeling mixtures of continuous, ordinal and nominal measures

Suppose Yi = (CT
i ,OT

i ,N
T
i )T is the observed vector consisting of the continuous portion CT

i = (ci1, . . . , cim1), the ordinal
portion OT

i = (oi1, . . . , oim2) and the nominal portion NT
i = (ni1, . . . , nim3), for subject i, i = 1, . . . ,N .

We have three assumptions for the observed Yi. First, we assume that Ci follows a multivariate normal distribution with
mean equal to XCiβ , where β is the regression parameter vector, and the variance matrix equal to ΣC . Second, we assume
that Oi follows the multivariate probit model with the continuous normal latent variable ZOi having mean equal to XOiβ and
covariance matrix equal to ΣO. Notice that ΣO is a correlation matrix (Section 2.1). Then we assume the MVMNP model for
Ni with the continuous normal latent variable ZNi having mean equal to XNiβ and covariance matrix equal to ΣN , where ΣN
is a restricted covariance matrix.

Then we denote Zi = (CT
i , ZOT

i , ZN
T
i )T and Xi = (XT

Ci, X
T
Oi, X

T
Ni)

T . We further assume that Zi follows multivariate normal
distributionwithmean equal to Xiβ and the covariancematrix equal toΣ with cov(Ci) = ΣC , cov(ZOi) = ΣO and cov(ZNi) =

ΣN . Notice that Σ is a covariance matrix with some of the diagonal elements equal to 1.

3.2. Bayesian sampling for mixtures of continuous, ordinal and nominal measures without missing values

To use the MCMC scheme, we need to write down the posterior density for β , Γ (cutpoints for the ordinal portion), Σ ,
and Z = (Z1, . . . , ZN) given the observed Yi, which is

p(β, Γ , Σ, Z |Y ) ∝ p(β) × p(Γ ) × p(Σ) ×

n
i=1

[Ii × φ(Zi; Xiβ, Σ)]

where φ is the standard normal density function, and Ii is the indicator function indicating the compatibility of Zi and Yi,
combining the compatibility from Sections 2.1 and 2.2. This is, Ii = IOi × INi, where IOi is the indicator function for the
multivariate probitmodel for ordinalmeasures and INi is the indicator function for theMVMNPmodel for nominalmeasures.
We have

IOi =

m2
j=1

Iij, and Iij =

J
l=1

1(Oij=l)1(γjl<ZOij<γj(l+1)).INi =

m3
q=1

Iiq,

and

Iiq = 1(diqj=0,ZNiqj<0,j=1,...,pq−1) +

pq−1
k=1

1(diqj=k,ZNiqk= max
1≤l≤pq−1

(ZNiql,0)).

To implement our MCMC algorithms, we build on the following:
• Assuming β ∼ N(b, C) as a prior distribution for β and using standard Bayesian linear model results, β|Γ , Σ, Z, Y has a

multivariate normal distribution:

β|Γ , Σ, Z, Y ∼ N(β̂, Vβ),

where Vβ =

N
i=1 Xi

TΣ−1Xi + C−1
−1

and β̂ = Vβ

N
i=1 Xi

TΣ−1Zi + C−1b

.

• The latent variable Zij|β, Γ , Σ, Zij′ , j′ ≠ j, Yi has a truncated normal distribution that can be represented:

p(Zij|β, Γ , Σ, Yij) ∝ Ii × p(Zij|β, Γ , Σ, Zij′ , j′ ≠ j)
= Ii × φ(Zij; µij, Σij)

where: µij and Σij are the conditional mean and variance of Zij given Zij′ , j′ ≠ j. The truncation is based on the compara-
bility of Zij and its corresponding Yij.

• Considering the full conditional distribution foreach γmn, m = {1, . . . , po, n = 2, . . . , Jj − 1}, where po is the number
of ordinal measures, we have

p(γmn|β, Σ, Z, Y , γmj, j ≠ n) = p(γmn|ZOim, Cim, i = 1, . . . ,N, γmj, j ≠ n)

∝

N
i=1

[I(Oim=n)I(γm(n−1)<ZOim<γmn) + I(Oim=n+1)I(γmn<ZOim<γm(n+1))]

= U(γmn;max{max{ZOim : Oim = n}, γm(n−1)},

min{min{ZOim : Oij = n + 1}, γm(n+1)}).

• Assuming Σ has prior density p(Σ), we have p(Σ |β, Γ , Z, Y ) is proportional to p(Σ) ×
n

i=1 φ(Zi; Xiβ, Σ). It is not
easy to directly draw simulations from the posterior distribution of the covariance matrix Σ with some diagonal ele-
ments equal to 1. In the next section, we elaborate in detail the steps involved in drawing p(Σ |β, Γ , Z, d) using the
parameter-extended Metropolis–Hastings (PX-MH) algorithm.
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3.3. PX-MH algorithm

In this section we review the PX-MH algorithm developed by Zhang et al. [68]. To sample a correlation matrix, R, in a
multivariate probit model, Zhang et al. sample a covariance matrix,W , using the decompositionW = D1/2RD1/2 where D is
a diagonal matrix of artificial variance components governed by a joint prior distribution, p(R,D), for the correlation matrix
R and D. We present the PX-MH algorithm as follows.

Set initial value of (R(0),D(0)) through settingW (0)
= D(0)

1
2 R(0)D(0)

1
2 to an initial covariance matrix.

Then, at iteration (t + 1)

1. Generate (R∗,D∗) by generatingW ∗
= D∗

1
2 R∗D∗

1
2 fromWishartp(m,W (t)).

2. Take

(R(t+1),D(t+1)) =


(R∗,D∗) with probability α

(R(t),D(t)) otherwise

where α = min


p(R∗,D∗
|β,Z,Y )

p(R(t),D(t)|β,Z,Y )

q(W (t)
|W∗)

q(W∗|W (t))
, 1


. Here, p(R,D|β, Z, Y ) is the joint posterior density of (R,D) and q(.|W (t)), the

proposal density, is equal to the product of the Jacobian term for the transformation (W → R,D) and the Wishart density
with m degrees of freedom and scale matrix equal toW (t).

For the multivariate probit model, ΣO is a correlation matrix. So the diagonal elements of Σ corresponding to ΣO are
all equal to 1. For the MVMNP model, ΣN has g diagonal elements equal to 1, where g is the number of nominal mea-
sures. The covariancematrixΣC of the continuousmeasures is a covariancematrix without any restrictions. We decompose
Σ = D0RD0 where R is the correlation matrix of Σ and D0 is the diagonal standard deviation matrix with some of the ele-
ments equal to 1. Thenwe consider a diagonalmatrixD replacing those elements ofD0 equal to 1with unknown parameters.
Therefore, the matrixW = DRD is a covariance matrix without restrictions on the diagonal elements. We use the above PX-
MH algorithm to sample W , thereby obtaining a draw of Σ . A slight distinction between sampling Σ in the mixture model
and sampling R in the multivariate probit model is that some of the diagonal elements of D are identified parameters in the
mixture model, while for the multivariate probit model, all the diagonal elements of D are artificial; this distinction does
not alter the character of the algorithm, however.

For the prior distribution of Σ , we use a PXW prior proposed by Zhang et al. [68], with density given by the product of
the Jacobian term for the transformation (W → R,D) and theWishart density withm0 degrees of freedom and scale matrix
equal to Λ. The scale matrix Λ reflects the prior guess for the covariance matrix Σ with higher values of m0 representing
greater prior precision.

Including the artificial parameters from the ordinal and nominal measures, the joint posterior density of β, Γ , R,D, Z
given Y is

p(β, Γ , R,D, Z |Y ) ∝ p(β) × p(Γ ) × p(R,D) ×

N
i=1

[Ii × φ(Zi; Xiβ, Σ)].

The conditional distributions for β , Γ and Zi given other parameters are the same as described in Section 3.2. Through
this joint posterior density, we have p(R,D|β, Γ , R,D, Z, Y ) is proportional to p(R,D) ×

N
i=1 φ(Zi; Xiβ, Σ). As suggested

above, the prior density p(R,D) can be specified by letting the joint prior distribution of (R,D) be from the PXW (m0, Λ)
family of distributions. Therefore, one cycle of the algorithm consists of Gibbs steps to sample β , each component of the
latent variable zi, each components of the cutpoint vector Γ , and a Metropolis–Hastings step for sampling (R,D), with Σ

generated as a byproduct of the PX-MH step.

3.4. Missing data investigation for mixtures of continuous, ordinal and nominal measures

In this sequel, we assume that there are no missing values for adjusted covariates and concentrate on the missing values
for mixed data types. In Section 3.2, we present the Bayesian sampling algorithm for mixed data without missing values.
However, in reality, missing values happen quite often. This means the mixed Y is comprised of Yobs denoting the observed
portion and Ymis denoting the missing portion. Specifically, we further distinguish the missing values from the continuous
variables denoted by Ymis,c and those from the discrete (ordinal and categorical) variables by Ymis,d. Since the continuous
variables are part of the latent variables Z , therefore, we incorporating this information to the joint posterior distribution,
we have

p(β, Γ , Σ, Z, Ymis,d|Yobs) ∝ p(β) × p(Γ ) × p(Σ) ×

n
i=1

[Ii × φ(Zi; Xiβ, Σ)].

We notice that this joint posterior distribution has the same formulation as that without missing values in Section 3.2.
However, Ymis,c is included through Z and Ymis,d is in indicator function Ii.

Without missing values for continuous variables, the sampled steps for latent variables are only those corresponding to
the ordinal and categorical data. With missing values Ymis,c , the latent variable corresponding to each component Ymis,c is
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sampled, too. Notice that this sampling step is a conditional univariate normal distribution without truncation. However,
the full conditional distribution for each component of Ymis,d is determined through the indicator function Ii. Due to this
determinate relationship, each component Ymis,d has no opportunity to make a transition to any other values once given the
initial value from its corresponding latent component. Hence, the produced Markov chain is reducible and the samplings
from the full conditional distributions do not converge.

To solve the reducibility issue, we integrate Ymis,d from the joint posterior distribution and consider p(β, Γ , Σ, Z |Yobs),
which satisfies the positive condition implying the convergence of theMarkov chain Robert and Casella [56]. We notice that
the sampling for each latent component corresponding to themissed component from Ymis,d is a univariate normal distribu-
tion without truncation. The other samplings remain the same formulation as those without missing values, including the
PX-MH sampling step for covariance matrix Σ . Then based on their determinate relationship, we can impute the missing
values Ymis,d through their sampled corresponding latent variables. For the purpose of multiple imputation, after diagnosing
the convergence of the Markov chain, we can thin the chain to get 5–10 approximately independent samples, or obtain the
samples by running 5–10 parallel chains.

4. Simulated examples

Weuse the following simulated examples to illustrate the Bayesianmodel and theMCMCalgorithmproposed in Section 3
for analyzing combinations of continuous, ordinal and nominal measures.

We generated two simulated data sets, one with a sample size of 200 and the other with a sample size of 2000. Each
subject iwas assumed to have two nominal outcomes (yi1 with three categorical levels and yi2 with four categorical levels),
two ordinal outcomes (yi3 and yi4, each having four levels from0up to 3) and two continuous outcomes (yi5 and yi6). Based on
Section 2.2, we use zi1 and zi2 to denote the two latent variables corresponding to yi1, use zi3, zi4, and zi5 to denote the latent
variable corresponding to yi2, and use zi6 and zi7 to denote the latent variables for ordinal outcomes yi3 and yi4, respectively.
There are two unknown cutpoints for an ordinal outcome having four levels based on Section 2.1 and we set them to be 0.5
and 1.0 for both ordinal outcomes, yi3 and yi4. The covariate matrix Xi was generated from i.i.d. uniform (−0.5, 0.5). We set
the regression parameter β equal to 2.0. We generate the multivariate normal vector zi = (zi1, . . . , zi7, yi5, yi6) with mean
equal toXiβ and covariancematrix equal toΣ with the variance components for (zi2, zi4, zi5, yi5, yi6) being 1, the correlations
between zi1 and zi2, among zi3, zi4 and zi5, between zi6 and zi7, and between yi5 and yi6 being 0.3, and other correlations being
0.2. Based on the assumptions for the multivariate multinomial probit model for multivariate nominal outcomes and the
multivariate probit model for multivariate ordinal outcomes in Section 2, the data yi = (yi1, yi2, yi3, yi4, yi5, yi6)with yi1 and
yi2 being the categorical variables, yi3 and yi4 being the ordinal variables, and yi5 and yi6 being the continuous variables is
generated according to the its correspondence to zi.

To perform statistical inference using the combinedmodel in Section 3.1, we consider two alternative prior formulations
for β and Σ . First, we take the prior distribution for β to be N(0, 100), which is very weakly informative, and we assume
Σ has a PXW (m0 = 10, I) distribution, i.e. a prior guess that the covariance matrix is equal to the identity matrix with
ten degrees of freedom. A proper prior distribution for the 9 by 9 covariance matrix Σ requires m0 to be greater than or
equal to 9, and thus the prior distribution reflects a weakly informative belief in a scenario where the levels of the nominal
variables, the latent variables of the ordinal outcomes and the normal continuous variables have no association with one
another.We also examined a strongly informative prior scenariowith aN(0, 1) prior distribution forβ and a PXW (m0 = 50,
CS(0.4)) prior distribution for Σ , where CS(0.4) indicates a compound symmetry structure with equal correlation 0.4. The
degrees-of-freedom parameter m0 in this case reflects a strong prior belief that the covariance matrix has a CS(0.4) struc-
ture. We label the first approach PXW_I_weak and the second approach PXW_CS_strong. We set the non-informative prior
for four unknown cutpoints denoted by (γ1, γ2, γ3, γ4) with γ1 and γ2 for yi3, and γ3 and γ4 for yi4 in both PXW_I_weak
and PXW_CS_strong scenarios, i.e., p(γ1, γ2, γ3, γ4) ∝ 1. These two prior scenarios are illustrated in Fig. 1, showing that the
PXW_CS_strong scenario gives much tighter information for all of the parameters than the PXW_I_weak scenario does.

We ran the MCMC algorithm for 201,000 iterations, discarding the first 1000 iterations as a burn-in period for each
of these two prior distribution scenarios. Acceptance rates for the proposed draws in the PX-MH step were roughly 15%
under both prior scenarios for both simulated data. The posteriormeans and posterior standard deviations for the regression
parameter β , the variance parameters (σ22, σ44, σ55, σ88, σ99) and four cutpoints (γ1, γ2, γ3, γ4) are presented in Table 1.
Table 2 contains the posterior mean and standard deviation for each correlation. Through Table 1, we see the estimated
values for the regression parameters, the variance parameters and the cutpoints are quite similar under each prior scenario
for both simulated data. However, the estimated correlation parameters appear to depend somewhat on the specification
of prior distributions for the data with sample size equal to 200. Not surprisingly, the posterior means of the correlations
under the PXW_CS_strong scenario are pulled toward the assumed value of 0.4. In comparison with the data with sample
size equal to 200, the data with sample size equal to 2000 gives muchmore similar estimated correlation parameters under
these two prior scenarios. Also, the posterior standard deviations for all parameters under the PXW_CS_strong scenario
are uniformly smaller than those under the PXW_I_weak scenario. The coverage of true values appears satisfactory in both
scenarioswith different sample size, partly because substantial posterior uncertainty remains. In stands to reason that better
prior specification may give better estimated values, but, in general, inference appears to be fairly robust to the choice
between these two groups of priors, presumably because the sample sizes of 200 and 2000 are sufficient to dominate the
prior in either scenario. Unsurprisingly, the data with larger sample size gives better estimated values and is more robust to
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Table 1
Posterior means (posterior standard deviations) for the regression parameter (β), five variance parameters (σ22, σ44, σ55, σ88, σ99) and four cutpoints
(γ1, γ2, γ3, γ4) under PXW_I_weak and PXW_CS_strong scenarios. This table shows that the posterior means for all parameters are similar under these
two groups of priors and the posterior standard deviations under the PXW_CS prior are uniformly smaller than those under the PXW_I prior. Under both
PXW_I_weak and PXW_CS_strong scenarios, the posterior standard deviations for the data with the sample size equal to 2000 are uniformly smaller than
those for the data with the sample size equal to 200.

Parameters True n = 200 n = 2000
PXW_I_weak PXW_CS_strong PXW_I_weak PXW_CS_strong

β 2.0 2.00(0.11) 1.94(0.10) 2.04(0.04) 2.02(0.04)
σ22 1.00 1.11(0.31) 0.95(0.15) 0.98(0.10) 0.92(0.08)
σ44 1.00 1.04(0.21) 0.91(0.14) 1.07(0.14) 0.96(0.10)
σ55 1.00 0.92(0.26) 0.88(0.15) 1.01(0.14) 0.92(0.10)
σ88 1.00 1.14(0.11) 1.08(0.10) 0.97(0.03) 0.97(0.03)
σ99 1.00 1.16(0.11) 1.12(0.10) 1.02(0.03) 1.02(0.03)
γ1 0.50 0.51(0.07) 0.51(0.07) 0.47(0.02) 0.47(0.02)
γ2 1.00 0.98(0.10) 0.97(0.10) 0.96(0.03) 0.96(0.03)
γ3 0.50 0.52(0.08) 0.52(0.07) 0.47(0.02) 0.46(0.02)
γ4 1.00 1.05(0.11) 1.04(0.10) 1.02(0.03) 1.02(0.03)

Fig. 1. Prior density plots for the regression parameter (β), variance parameters (σ22, σ44, σ55, σ88, σ99), and 36 correlations (rij). The dotted lines are for
the PXW_I_weak scenario, the solid lines are for the PXW_CS_strong scenario.

the prior choices in comparison with the one with smaller sample size. Further illustration for marginal posterior densities
for each simulated data scenario are presented in Figs. 2 and 3, respectively.
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Table 2
The posteriormeans and standard deviations for the correlations of the vector (zi1, zi2, zi3, zi4, zi5, zi6, zi7, yi5, yi6). Above diagonal: the posterior correlation
means (posterior standard deviations) for the data with 2000 sample size under PXW_CS_strong prior and PXW_CS_weak prior. Below diagonal: the
posterior correlation means (posterior standard deviations) for the data with 200 sample size under PXW_CS_strong prior and PXW_CS_weak prior.

True 0.30 0.20 0.20 0.20 0.20 0.20 0.20 0.20

PXW_CS 0.27 0.26 0.22 0.23 0.21 0.22 0.26 0.21
(0.23) (0.22) (0.22) (0.23) (0.19) (0.19) (0.18) (0.18)

PXW_I 0.26 0.24 0.19 0.21 0.19 0.21 0.26 0.20
(0.23) (0.23) (0.23) (0.23) (0.19) (0.20) (0.18) (0.18)

0.30 True 0.20 0.20 0.20 0.20 0.20 0.20 0.20

0.30 PXW_CS 0.17 0.13 0.24 0.23 0.19 0.23 0.16
(0.31) (0.23) (0.22) (0.23) (0.19) (0.19) (0.18) (0.18)
0.24 PXW_I 0.14 0.09 0.22 0.21 0.17 0.21 0.14
(0.40) (0.24) (0.24) (0.23) (0.19) (0.20) (0.18) (0.18)

0.2 0.2 True 0.3 0.3 0.2 0.2 0.2 0.2

0.27 0.26 PXW_CS 0.23 0.27 0.27 0.25 0.20 0.24
(0.32) (0.31) (0.26) (0.25) (0.20) (0.20) (0.19) (0.18)
0.20 0.10 PXW_I 0.21 0.24 0.26 0.24 0.19 0.23
(0.39) (0.38) (0.29) (0.29) (0.20) (0.21) (0.19) (0.19)

0.2 0.2 0.3 True 0.3 0.2 0.2 0.2 0.2

0.23 0.34 0.25 PXW_CS 0.28 0.25 0.29 0.18 0.16
(0.32) (0.31) (0.33) (0.26) (0.20) (0.20) (0.19) (0.19)
0.13 0.26 0.06 PXW_I 0.31 0.24 0.28 0.16 0.14
(0.39) (0.37) (0.45) (0.28) (0.20) (0.21) (0.19) (0.19)

0.2 0.2 0.3 0.3 True 0.2 0.2 0.2 0.2

0.30 0.29 0.28 0.29 PXW_CS 0.19 0.19 0.17 0.22
(0.31) (0.30) (0.33) (0.32) (0.20) (0.20) (0.18) (0.19)
0.22 0.09 0.14 0.17 PXW_I 0.17 0.18 0.15 0.20
(0.39) (0.40) (0.44) (0.42) (0.21) (0.21) (0.19) (0.19)

0.2 0.2 0.2 0.2 0.2 True 0.3 0.2 0.2

0.09 0.18 0.27 0.21 0.23 PXW_CS 0.26 0.19 0.22
(0.30) (0.29) (0.30) (0.30) (0.30) (0.17) (0.16) (0.16)
−0.13 0.01 0.16 0.04 0.08 PXW_I 0.25 0.18 0.21
(0.34) (0.33) (0.34) (0.35) (0.35) (0.17) (0.16) (0.16)

0.2 0.2 0.2 0.2 0.2 0.3 True 0.2 0.2

0.30 0.35 0.25 0.28 0.36 0.36 PXW_CS 0.24 0.23
(0.29) (0.29) (0.30) (0.30) (0.29) (0.27) (0.16) (0.16)
0.22 0.31 0.12 0.20 0.32 0.33 PXW_I 0.23 0.23
(0.34) (0.34) (0.36) (0.36) (0.36) (0.30) (0.16) (0.16)

0.2 0.2 0.2 0.2 0.2 0.2 0.2 True 0.3

0.18 0.25 0.23 0.27 0.31 0.25 0.19 PXW_CS 0.27
(0.28) (0.28) (0.28) (0.28) (0.28) (0.26) (0.27) (0.14)
0.06 0.16 0.12 0.19 0.24 0.19 0.09 PXW_I 0.27
(0.31) (0.31) (0.32) (0.32) (0.33) (0.28) (0.29) (0.14)

0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 True

0.21 0.36 0.29 0.34 0.41 0.27 0.25 0.28 PXW_CS
(0.28) (0.27) (0.28) (0.28) (0.27) (0.26) (0.26) (0.23)
0.11 0.31 0.20 0.28 0.39 0.22 0.16 0.24 PXW_I
(0.31) (0.31) (0.32) (0.32) (0.32) (0.28) (0.28) (0.25)

The convergence of the MCMC algorithm was assessed by several procedures recommended by Cowles and Carlin [10].
We calculatedGelman and Rubin’s potential scale reduction factor,


R̂ for five dispersed chainswith the first 1000 iterations

discarded as burn-in [20]. The jumping distribution degrees-of-freedom parameter of m = 1200 for the data with sample
size equal to 200 and of m = 10 000 for the sample size equal to 2000 gave an acceptance rate of about 15% for the PX-MH
step of the algorithm. Although this is below the value of 25% recommended by Roberts and Sahu [57], we find in practice
that higher values for m substantially increased autocorrelations. For the single regression parameter β , 36 correlation
parameters rij, five variance parameters (σ22, σ44, σ55, σ88, and σ99), and four cutpoints (g1, g2, g3, g4), the values of


R̂ for

these two simulated data were all below 1.25 after 40,000 iterations and were all below 1.04 after further 60,000 iterations.
Themultivariate potential scale reduction factor for these 46 parameters was 1.21 after 40,000 iterations, improving to 1.04
at 100,000 iterations for each simulated data.
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Fig. 2. Posterior density plots for the regression parameter (β), variance parameters (σ22, σ44, σ55, σ88, σ99), and 36 correlations (rij) for the data set with
200 sample size. Dotted lines correspond to the PXW_I_weak scenario, and solid lines correspond to the PXW_CS_strong scenario. The plots show that the
posterior distributions are robust to the prior specification for the data with 200 sample size.

5. Application to the St Louis Risk Research Project data

Table 3 presents the descriptive information for the St Louis Risk Research Project data used by Little and Schluchter [37],
Schafer [59], and Liu and Rubin [39]. The data set was collected from 69 families and contains one categorical variable Gwith
three categories indicating the parental risk levels, two binary variables D1 and D2 indicating the levels of psychiatric symp-
toms for first and second child, and four continuous variables V1, V2, R1, and R2 being the verbal and reading comprehension
scores for first and second child, respectively. From Table 3, we can see that except for categorical variable Gwith nomissing
values, the other variables’ missing percentages are not trivial. The last column in Table 3 contains the two latent variables
zi,1 and zi,2 from the categorical variable G, two latent variables zi,3 and zi,4 from binary D1 and D2, respectively, and four
continuous variables yi,5, yi,6, yi,7 and yi,8 for the verbal and reading comprehension scores. To illustrate our methodology
using this example, we apply our proposed method through modeling latent variables zi,1, zi,2, zi,3, zi,4 and the continuous
variables yi,5, yi,6, yi,7, yi,8 simultaneously. We assume non-informative or uniform priors for all unknown parameters and
the covariancematrix.We ran theMCMC sampling algorithmelaborated in Section 3 and checked the convergence after run-
ning 2,000,000 iterations, yielding a 14.5% acceptance rate. TheMCMC samplers pass the criterion proposed by Heidelberger
and Welch [29] with Monte Carlo errors less than 0.01 using R package BOA.

Table 4 contains the posterior means and standarddeviations for all eight regression parameters (identity matrix is as-
sumed for design matrix), one variance from categorical data G, four variances for all the continuous score variables. Table 5
presents the posterior means (above the diagonal) and the posterior standard deviations (below the diagonal) for the 8 by 8
correlation matrix. We can see that the parental risk levels (detailed definition can be referred to Little and Schluchter [37])
are significantly correlated with both children’s psychiatric symptoms; there are positive correlations among the children’s
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Fig. 3. Posterior density plots for the regression parameter (β), variance parameters (σ22, σ44, σ55, σ88, σ99), and 36 correlations (rij) for the data set with
2000 sample size. Dotted lines correspond to the PXW_I_weak scenario, and solid lines correspond to the PXW_CS_strong scenario. The plots show that
the posterior distributions are quite robust to the prior specification for the data with 2000 sample size.

Table 3
Description of variables in St Louis Risk Research Project data.

Variable Description Categories Sample size Missing (%) Latent variables

G Parental risk group 1. Normal 27 0.0 (Reference)
2. Moderate 24 zi,1
3. High 18 zi,2

D1 Symptoms of first child 1. Low 21 40.6 (Reference)
2. High 20 zi,3

D2 Symptoms of second child 1. Low 13 40.6 (Reference)
2. High 28 zi,4

V1 Standard verbal comprehension score for first child 43.5 yi,5
V2 Standard verbal comprehension score for second child 24.6 yi,6
R1 Standard reading comprehension score for first child 30.4 yi,7
R2 Standard reading comprehension score for second child 23.2 yi,8

testing scores and the parental risk levels and the children’s psychiatric symptoms; and significant correlations exist among
children’s verbal and reading scores. It seems that the parental risk levels affect both children’s psychiatric symptoms, but
do not have a significant negative effect on children’s verbal and reading scores.
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Table 4
Posterior means and posterior standard deviations for the regression parameter (β),
one variance parameters (σ22) from the categorical variable G, and four variances
σ55, σ66, σ77, σ88 for four continuous variables V1, V2, R1, R2 .

Parameters Posterior means Posterior standard deviations

β1 −0.16 0.185
β2 −0.30 0.201
β3 −0.10 0.199
β4 0.61 0.223
β5 122.8 0.895
β6 116.0 0.822
β7 106.9 0.599
β8 103.8 0.567
σ22 0.97 0.541
σ55 37.43 1.07
σ66 37.86 1.08
σ77 18.57 0.90
σ88 17.88 0.89

Table 5
The posterior means and standard deviations for the correlations of the vector (zi1, zi2, zi3, zi4, yi5, yi6, yi7, yi8). Above diagonal: the posterior correlation
means. Below diagonal: the posterior standard deviations.

1.00 0.30 0.46* 0.41*
−0.03 0.01 0.08 0.16*

0.45 1.00 0.35* 0.49*
−0.01 0.05 0.10 0.05

0.38 0.40 1.00 0.42*
−0.03 0.22* 0.12 0.22*

0.38 0.36 0.37 1.00 0.11* 0.16* 0.28* 0.46*

0.21 0.22 0.22 0.22 1.00 0.51* 0.61* 0.36*

0.22 0.21 0.25 0.24 0.14 1.00 0.43* 0.52*

0.25 0.25 0.25 0.26 0.14 0.16 1.00 0.33*

0.25 0.25 0.28 0.28 0.16 0.15 0.18 1.00
* Indicates those 95% credible intervals excluding 0.

Table 6
Expected frequencies for each cell and estimated cell means. The first row is listed by ‘C’ for cell, ‘F’ for frequency, ‘V1 ’ for verbal score for first child, ‘V2 ’
for verbal score for second child, ‘R1 ’ for reading score for first child, ‘R2 ’ for reading score for second child. Column denoted by A and column denoted by B
are for two maximum likelihood methods (without and with cell probability restrictions) from Little and Schluchter [37] and column denoted by M is for
using our proposed MCMC algorithm.

C F V1 V2 R1 R2

G D1 D2 A B M A B M A B M A B M A B M

1 1 1 10.2 4.8 10.2 133.7 140.9 130.1 119.4 129.5 118.3 110.2 113.6 109.1 99.8 103.0 101.3
1 1 2 9.0 8.8 9.8 161.1 160.1 146.8 132.1 131.0 127.1 123.4 122.8 118.1 116.0 115.4.0 113.4
1 2 1 3.6 3.7 3.4 147.7 136.9 135.6 126.9 111.6 135.4 111.2 105.3 111.8 110.0 101.7 103.5
1 2 2 4.2 9.7 3.6 123.9 120.8 138.5 151.4 148.0 148.1 118.0 114.5 116.0 111.9 111.1 120.0
2 1 1 2.2 4.3 2.6 81.1 81.7 98.6 103.3 104.2 88.9 87.6 88.4 94.2 101.1 101.5 89.1
2 1 2 7.2 7.8 6.2 134.6 134.8 124.5 109.6 109.0 110.0 104.3 104.4 104.0 109.4 109.6 108.6
2 2 1 2.3 3.3 2.8 122.6 122.0 106.7 146.1 145.3 99.6 96.4 96.1 97.0 134.5 134.3 90.9
2 2 2 12.3 8.6 12.4 104.7 104.5 113.6 102.4 102.3 113.7 106.7 106.6 105.2 97.0 96.8 106.4
3 1 1 2.1 3.2 3.4 137.7 137.5 128.4 96.3 96.0 98.4 115.8 115.7 106.8 82.9 82.8 85.3
3 1 2 7.8 5.9 5.2 127.9 119.4 110.5 128.3 117.1 103.7 105.7 100.7 103.4 100.8 96.1 98.4
3 2 1 1.0 2.5 1.2 58.3 90.4 74.4 105.4 148.6 120.0 56.2 76.2 67.9 88.2 108.3 95.0
3 2 2 7.1 6.4 8.2 107.2 107.2 122.1 104.8 104.8 124.1 107.3 107.4 110.5 107.0 107.3 108.0

Little and Schluchter [37] applied the general locationmodel and considered themodel for each categorical cell with and
without cell probability restrictions. They gavemaximum likelihood estimates using EM algorithm for expected frequencies
of all cells comprised by categorical variable G and two binary variables D1 and D2 and expected means for all continuous
score variables given each cell. To make a comparison with their estimation, we calculate the averaged frequencies of all
cells and the averaged means for all continuous score variables for each cell based on the MCMC sampling for imputing
the missing values at 120,000th, 140,000th, 160,000th, 180,000th, and 200,000th iterations. We listed the results from
Little and Schluchter [37] and ours in Table 6. The rows are for each cell, column F is for estimated frequency, and columns
V1, V2, R1 and R2 are for estimated scores. In each column, A column and B column are for twomaximum likelihoodmethods
(without andwith cell probability restrictions) fromLittle and Schluchter [37] andMcolumn is for using our proposedMCMC
algorithm. Through Table 6, we can see that our estimated cell frequencies are similar to either one of those from Little and
Schluchter [37]. We also notice that the big differences found between Little and Schluchter’s and ours are the estimated
mean verbal and reading score for second children for cell (G = 2,D1 = 2,D2 = 1). Investigating these differences due to
substantial missing percentages or modeling issues is worth further attention.
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Table 7
Description of variables used in foreign language data analysis.

Variable Description Categories Percentage Missing (%) Latent variables

LAN Foreign language studied French 24.0 0.0 zi,1
Spanish 28.0 zi,2
German 40.9 zi,3
Russian 7.1 (Reference)

AGE Age group Less than 20 46.3 3.9 zi,4
20–21 43.3 zi,5
22+ 10.4 (Reference)

SEX Female 45.7 0.4 zi,6
Male 54.3 (Reference)

PRI Number of prior None 26.5 3.9 zi,7
Foreign language courses 1–2 27.2

3+ 46.3

GRD Final grade in C, D, F 17.2 16.8 zi,8
Foreign language course B 28.4

A 54.4 (Reference)

FLAS Score on foreign language attitude scale 0.0 yi,9
MLAT Modern Language Aptitude Test 17.6 yi,10
SATV Scholastic Aptitude Test, verbal score 12.2 yi,11
SATM Scholastic Aptitude Test, math score 12.2 yi,12
ENG Score on Penn State English placement exam 13.3 yi,13
HGPA High school grade point average 0.4 yi,14
CGPA Current college grade point average 12.2 yi,15

6. Application to a foreign language study

The foreign language study aimed to investigate the usefulness of a newly developed instrument, the Foreign Language
Attitude Scale (FLAS), for predicting success in the study of foreign language, in comparison with the other established in-
struments, such as the Modern Language Aptitude Test (MLAT), the Scholastic Aptitude Test (SATV) and other test scores.
The data were collected on a sample of 279 students who enrolled in foreign language courses at The Pennsylvania State
University in the early 1980s. This data set was analyzed by Schafer [59] and de Leon and Carrière [13] using general location
models.

Here we investigate the between-measure and within-measure associations across the levels of two nominal variables
(LAN with 4 levels and AGE with 3 levels), one binary variable (SEX), two ordinal variables (PRI and GRDwith 3 levels both)
and 7 continuous variables (FLAS, MLAT, SATV, SATM, ENG, HGPA, CGPA). Descriptive information about these 12 variables is
presented in Table 7.

We used our proposed model and MCMC algorithm considering missing values and chose an independent N(0, 100)
prior for each regression parameter and a PXW (m0 = 20, I) prior for the covariance matrix for vector zi. We ran 401,000
iterations with 1000 burn-in iterations, yielding a roughly 15% acceptance rate for the proposed draws in the PX-MH step.
We assessed the convergence of the MCMC algorithm by Cowles and Carlin [10] and values of univariate potential scale
reduction factors were all well below 1.11 and the multivariate scale reduction factor was 1.21.

In Table 8, we present the significant estimated correlations with 95% credible intervals. We can see that the FLAS score
is positively related to GRD (the final grade in foreign language course), MALT (Modern Language Aptitude Test) and ENG
(score on Penn State English placement exam). Not surprisingly, GRD (the final grade in foreign language course) is positively
correlated with MLAT, SATV, SATM, ENG, HGPA, CGPA which have higher positive correlations among each other. There are
other interesting correlations, such as female students tended to get higher scores on the language tests while get lower
scores on math tests, and the students who studied Spanish tended to get higher language scores while those who studied
French did not.

Schafer [59] used the general location model for conducting missing data imputation on the FLAS data. However, there
are total 1000 cells comprised of all the ordered and nominal categorical variables including the main variable GRD and it is
not feasible to get the estimated correlation between continuous FLAS and ordinal GRD. Therefore, Schafer [59] considered
a logistic or proportional odds model for GRD while adjusting FLAS and other variables. de Leon and Carrière [13] gener-
alized the usual general location model by using grouped continuous model to estimate the correlation structure for both
continuous and ordinal variables given each cell obtained by combining all categorical variables. Their method can give
the estimated correlation among all the continuous and ordinal variables, and among each combined category and those
continuous and ordinal variables as well. However, all these estimated correlations are separate analyses based on each
combined category. In comparison with Schafer [59] and de Leon and Carrière [13], our method can perform the missing
data imputation and analysis simultaneously and jointly estimate the correlations among all variables.
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Table 8
Posterior means for the correlation parameters with the 95% credible intervals excluding 0.

French FLAS MLAT SATV SATM ENG
Mean −0.16 −0.21 −0.20 −0.20 −0.24
95% CI (−0.30, −0.01) (−0.38, −0.03) (−0.36, −0.03) (−0.36, −0.03) (−0.40, −0.06)

Spanish GRG MLAT SATV ENG
Mean 0.24 0.22 0.16 0.20
95% CI (0.07, 0.41) (0.06, 0.37) (0.00, 0.31) (0.04, 0.34)

German Age<20 PRI SATM
Mean −0.26 0.26 −0.22
95% CI (−0.50, −0.01) (0.02, 0.48) (−0.42, −0.01)

Age<20 Female GRD FLAS MLAT ENG
Mean −0.21 0.19 −0.17 −0.17 −0.21
95% CI (−0.38, −0.04) (0.02, 0.36) (−0.30, −0.02) (−0.32, −0.02) (0.35, −0.07)

Age 20–21 Female PRI CGPA
Mean −0.39 −0.22 −0.28
95% CI (−0.58, −0.17) (−0.41, −0.01) (−0.47, −0.09)

Female GRD FLAS MLAT SATM CGPA
Mean 0.20 0.29 0.18 −0.25 0.25
95% CI (0.05, 0.36) (0.16, 0.42) (0.03, 0.32) (−0.39, −0.11) (0.10, 0.38)

PRI GRD
Mean 0.18
95% CI (0.02, 0.32)

GRD FLAS MLAT SATM ENG HGPA CGPA
Mean 0.25 0.44 0.22 0.25 0.60 0.44
95% CI (0.13, 0.38) (0.32, 0.56) (0.08, 0.35) (0.12, 0.38) (0.50, 0.69) (0.32,0.56)

FLAS MLAT ENG
Mean 0.12 0.14
95% CI (0.01, 0.24) (0.03, 0.25)

MLAT SATV SATM ENG HGPA CGPA
Mean 0.31 0.39 0.49 0.35 0.44
95% CI (0.19, 0.42) (0.28, 0.49) (0.39, 0.58) (0.24, 0.46) (0.33, 0.54)

SATV SATM ENG HGPA CGPA
Mean 0.34 0.68 0.24 0.22
95% CI (0.23, 0.44) (0.62, 0.74) (0.12, 0.35) (0.10, 0.33)

SATM ENG HGPA CGPA
Mean 0.37 0.26 0.32
95% CI (0.27, 0.47) (0.15, 0.37) (0.21, 0.43)

ENG HGPA CGPA
Mean 0.27 0.28
95% CI (0.17, 0.38) (0.17, 0.39)

HGPA CGPA
Mean 0.45
95% CI (0.34, 0.54)

7. Conclusions

In this manuscript, we proposed a general model for analyzing combinations of continuous, ordinal and categorical
measures with missing values, using the MCMC algorithm in a Bayesian framework.

The proposed approach for handling combinations of various types of multivariate data has several advantages. First,
this model allows us to analyze continuous, ordinal and categorical multivariate data, or any subsets of these three types of
data simultaneously by combining the continuous variables and latent variables from themultivariate probit model and the
multivariate multinomial probit model. Second, the PX-MH algorithm for sampling the restricted covariance matrix gives
the covariance structure of continuous variables and the associated latentmeasures and embeds a flexible prior distribution
on the covariance matrix. Third, the sampling algorithm can naturally handle missing values in the multivariate measures.

Our method can be extended to handle mixed data type involving repeated continuous or ordinal or nominal measures.
This may induce variance component model or autoregressive process for the covariance matrix of repeated measures and
necessitates a structured instead of an unstructured covariancematrix for themixed data to reflect the patterned covariance
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structure. The covariance structure for repeated continuous and ordinal measures is straightforward. The specification of
the covariance matrix for repeated nominal measures can be referred to McCulloch and Rossi [42].

Due to the model identification issue, we impose restrictions on the diagonal elements of the covariance matrix for the
continuous measures and the latent variables from the multivariate probit model and the multivariate multinomial probit
model and apply the PX-MH algorithm to sample the covariance matrix with restrictions for the identified model. Based
on the discussion by MacEachern [40], the Markov chain produced by the non-identifiable model/algorithm has better
convergence rate than those from identifiable models/algorithms illustrated through an example of three-state Dirichlet
process of mixture model. MacEachern [40] shows that the non-identifiable model has the smallest second eigenvalue
compared with the other identified models and proves that for countable state space, one step of the chain based on larger
conditioning sets (i.e., the sampler based on the non-identifiable model) is preferable to one step of the chain based on the
smaller conditioning sets. Based onMacEachern [40], particular consideration should be given to inducing non-identification
by adding symmetries such as relabeling of the clusters in the simple three-state Dirichlet process. Although the covariance
matrix with and without restrictions is sampled from a continuous state Markov chain, the non-identifiable model may still
have better convergence rate than the identifiable model. McCulloch and Rossi [42] elaborate the convergence issues for the
non-identifiable multinomial probit model without imposing the restriction on the covariance matrix. Nobile [49] modifies
the algorithm by McCulloch and Rossi [42] through adding one Metropolis step along a direction of constant likelihood
induced by the non-identifiablemodel. To consider amodified algorithmbased on the covariancematrixwithout restrictions
may accelerate the MCMC convergence and is worth our attention for analyzing the mixed data types.

Further research on the use of the algorithm for multiple imputation is also worth pursuing. Another concern for using
the proposed method is the normality assumption. The effect of using this approach with non-normal data, diagnosing the
effect of non-normality, and proposing a more general method would be worthy areas for future investigation.

References

[1] J.H. Albert, S. Chib, Bayesian analysis of binary and polychotomous response data, J. Amer. Statist. Assoc. 88 (1993) 669–679.
[2] G. Arminger, U. Küsters, Latent trait models with indicators of mixed measurement level, in: Latent Trait and Latent Class Models, Plenum, New York,

1988.
[3] J.R. Ashford, R.R. Sowden, Multivariate probit analysis, Biometrics 26 (1970) 535–546.
[4] C.I. Bliss, The calculation of the dosage-mortality curve, Ann. Appl. Biol. 22 (1935) 134–167.
[5] J. Boscardin, X. Zhang, T. Belin, Modeling a mixture of ordinal and continuous repeated outcomes, J. Stat. Comput. Simul. 78 (2008) 873–886.
[6] P.J. Catalano, L.M. Ryan, Bivariate latent variable models for clustered discrete and continuous outcomes, J. Amer. Statist. Assoc. 87 (1992) 651–658.
[7] M. Chavance, S. Escolano,M. Romon, A. Basdevant, B. de Lauzon-Guillain,M.A. Charles, Latent variables and structural equationmodels for longitudinal

relationships: an illustration in nutritional epidemiology, BMC Med. Res. Methodol. 10 (2010) 37.
[8] Z. Chen, L. Kuo, Discrete choice models based on the scale mixture of multivariate normal distributions, Indian J. Statist. 64 (2002) 192–213.
[9] S. Chib, E. Greenberg, Analysis of multivariate probit models, Biometrika 85 (1998) 347–361.

[10] M.K. Cowles, B.P. Carlin, Markov chain Monte Carlo convergence diagnostics: a comparative review, J. Amer. Statist. Assoc. 91 (1996) 883–904.
[11] M.J. Daniels, R.E. Kass, Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models, J. Amer. Statist. Assoc. 94 (1999)

1254–1263.
[12] M.J. Daniels, S.-L.T. Normand, Longitudinal profiling of health care units based on continuous and discrete patient outcomes, Biostatistics 7 (2006)

1–15.
[13] A.R. de Leon, K.C. Carrière, General mixed-data model: extension of general location and grouped continuous models, Canad. J. Statist. 35 (2007)

533–548.
[14] A.R. de Leon, B. Wu, Copula-based regression models for a bivariate mixed discrete and continuous outcomes, Stat. Med. 30 (2011) 175–185.
[15] P.J. Diggle, K.-Y. Liang, S.L. Zeger, Analysis of Longitudinal Data, Oxford Science Publications, 1994.
[16] F. Drasgow, Polychoric and polyserial correlations, in: Encyclopedia of Statistical Sciences, John Wiley & Sons, 1986.
[17] D.B. Dunson, Bayesian latent variable models for clustered mixed outcomes, J. R. Stat. Soc. Ser. B (2000) 355–366.
[18] Y.D. Edwards, G.M. Allenby, Multivariate analysis of multiple response data, J. Mark. Res. XL (2003) 321–334.
[19] G.M. Fitzmaurice, N.M. Laird, Regression models for mixed discrete and continuous responses with potentially missing values, Biometrics 53 (1997)

110–122.
[20] A. Gelman, D.B. Rubin, Inference from iterative simulation using multiple sequences, Statist. Sci. 7 (1992) 457–511. (with discussion).
[21] J. Geweke, M. Keane, D. Runkle, Alternative computational approaches to inference in the multinomial probit model, Rev. Econ. Stat. 76 (1994)

609–632.
[22] J. Geweke,M. Keane, D. Runkle, Recursively simulatingmultinomialmultiperiodprobit probabilities, Tech. Rep., Proceedings of theAmerican Statistical

Association, Business and Economic Statistics Section, 1994.
[23] J. Geweke, M. Keane, D. Runkle, Statistical inference in the multinomial multiperiod probit model, J. Econometrics 80 (1997) 125–165.
[24] H. Geys, M.M. Regan, P.J. Catalano, G. Molenberghs, Two latent variable risk assessment approaches for mixed continuous and discrete outcomes from

developmental toxicity data, J. Agric. Biol. Environ. Stat. 6 (2001) 340–355.
[25] H. Goldstein, J. Carpenter, M.G. Kenward, K.A. Levin, Multilevel models with multivariate mixed response types, Statist. Model. 9 (2009) 173–197.
[26] T. Golob, A. Regan, Trucking industry adoption of information technology: a multivariate discrete choice model, Transp. Res. C 10 (2002) 205–228.
[27] W. Greene, Convenient estimators for the panel probit model: further results, Empir. Econom. 29 (2004) 21–47.
[28] V.A. Hajivassiliou, D.L. McFadden, P.A. Ruud, Simulation of multivariate normal orthan probabilities: methods and programs. MIT Mimeo, 1990.
[29] P. Heidelberger, P.D. Welch, Simulation run length control in the presence of an initial transient, Comput. Oper. Res. 31 (1983) 1109–1144.
[30] K.G. Jöreskog, D. Sörbom, LISREL VI-Analysis of Linear Structural Relationships by Maximum Likelihood, Instrumental Variables and Least Squares

Methods, Scientific Software, Mooresville, Indiana, 1984.
[31] N.M. Laird, J.H. Ware, Random-effects models for longitudinal data, Biometrics 38 (1982) 963–974.
[32] S.-Y. Lee, H.-T. Zhu, Statistical analysis of nonlinear structural equation models with continuous and polytomous data, British J. Math. Statist. Psych.

53 (2000) 209–232.
[33] J.M. Legler, M. Lefkopoulou, L.M. Ryan, Efficiency and power of tests for multiple binary outcomes, J. Amer. Statist. Assoc. 90 (1995) 680–693.
[34] K.-Y. Liang, S.L. Zeger, Longitudinal data analysis using generalized linear models, Biometrika 73 (1986) 13–22.
[35] K.-Y. Liang, S.L. Zeger, A class of logistic regression models for multivariate binary time series, J. Amer. Statist. Assoc. 84 (1989) 447–451.
[36] K.-Y. Liang, S.L. Zeger, B. Qaqish, Multivariate regression analyses for categorical data, J. R. Stat. Soc. Ser. B 54 (1992) 3–40.
[37] R.J.A. Little, M.D. Schluchter, Maximum likelihood estimation for mixed continuous and categorical data with missing values, Biometrika 72 (1985)

497–512.

http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref1
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref2
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref3
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref4
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref5
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref6
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref7
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref8
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref9
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref10
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref11
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref12
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref13
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref14
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref15
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref16
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref17
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref18
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref19
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref20
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref21
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref22
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref23
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref24
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref25
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref26
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref27
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref29
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref30
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref31
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref32
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref33
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref34
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref35
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref36
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref37


58 X. Zhang et al. / Journal of Multivariate Analysis 135 (2015) 43–58

[38] C. Liu, Bayesian analysis of multivariate probit model: discussion of ‘‘the art of data augmentation’’ by Van Dyk and Meng, J. Comput. Graph. Statist.
10 (2001) 75–81.

[39] C. Liu, D.B. Rubin, Ellipsoidally symmetric extensions of the general location model for mixed categorical and continuous data, Biometrika 3 (1998)
673–688.

[40] S.N. MacEachern, Comment on article by Jain and Neal, Bayesian Anal. 2 (2007) 483–494.
[41] R.E. McCulloch, N.G. Polson, P.E. Rossi, A Bayesian analysis of themultinomial probit model with fully identified parameters, J. Econometrics 99 (2000)

173–193.
[42] R. McCulloch, P.E. Rossi, An exact likelihod analysis analysis of the multinomial probit model, J. Econometrics 64 (1994) 207–240.
[43] D. McFadden, A method of simulated moments for estimation of discrete response models without numerical integration, Econometrica 57 (1989)

995–1026.
[44] D.L. Miglioretti, Latent transition regression for mixed outcomes, Biometrics 59 (2003) 710–720.
[45] M.E. Miller, C.S. Davis, J.R. Landis, The analysis of longitudinal polytomous data: generalized estimating equations and connections with weighted

least squares, Biometrics 49 (1993) 1033–1044.
[46] I. Moustaki, M. Knott, Generalized latent trait models, Psychometrika 65 (2000) 391–411.
[47] B. Muthén, A general structural equation model with dichotomous, ordered categorical and continuous latent variable indicators, Psychometrika 1

(1984) 115–132.
[48] B. Nandram, M.-H. Chen, Accelerating Gibbs sampler convergence in the generalized linear models via a reparameterization, J. Stat. Comput. Simul.

81 (1994) 27–40.
[49] A. Nobile, A hybrid Markov chain for the Bayesian analysis of the multinomial probit model, Stat. Comput. 8 (1998) 229–242.
[50] I. Olkin, R. Tate, Multivariate correlation models with discrete and continuous variables, Ann. Math. Statist. 32 (1961) 448–465.
[51] A.J. O’Malley, S. Lise Normand, R.E. Kuntz, Application of models for multivariate mixed outcomes to medical device trials: coronary artery stenting,

Stat. Med. 22 (2003) 313–336.
[52] R.L. Prentice, Correlated binary regression with covariates specific to each binary observation, Biometrics 44 (1988) 1033–1048.
[53] Y. Qu, M. Piedmonte, S.V. Medendorp, Latent variable models for clustered ordinal data, Biometrics 51 (1995) 268–275.
[54] M.M. Regan, P.J. Catalano, Regressionmodels and risk estimation formixed discrete and continuous outcomes in developmental toxicology, Risk Anal.

20 (2000) 363–376.
[55] U. Rendtel, U. Kaltenborn, Diskussionsbeiträge des Fachbereichs Wirtschaftswissenschaft der FU Berlin, Tech. Rep., Volkswirtschaftliche Reihe, 2004.
[56] C.P. Robert, G. Casella, Monte Carlo Statistical Methods, Springer, 2000.
[57] G. Roberts, S. Sahu, Updating schemes, correlation structure, blocking and parameterisation for the Gibbs sampler, J. R. Stat. Soc. Ser. B 59 (1997)

291–317.
[58] M.D. Sammel, L.M. Ryan, J.M. Legler, Latent variable models for mixed discrete and continuous outcomes, J. R. Stat. Soc. Ser. B 59 (1997) 667–678.
[59] J.L. Schafer, Analysis of Incomplete Multivariate Data, Chapman & Hall/CRC, 1997.
[60] J.-Q. Shi, S.-Y. Lee, Latent variable models with mixed continuous and polytomous data, J. R. Stat. Soc. 62 (2000) 77–87.
[61] M. Spiess, Estimation of a two-equation panel model withmixed continuous and ordered categorical outcomes andmissing data, Appl. Stat. 55 (2006)

525–538.
[62] M.A. Tanner, W.H. Wong, The calculation of posterior distributions by data augmentation, J. Amer. Statist. Assoc. 82 (1987) 528–540.
[63] J.H. Ware, Linear models for the analysis of longitudinal studies, J. Amer. Statist. Assoc. 39 (1985) 95–101.
[64] R.E. Weiss, J. Jia, M.A. Suchard, A Bayesianmodel for the common effects of multiple predictors onmixed outcomes, Inferface Focus 1 (2011) 886–894.
[65] S.L. Zeger, The analysis of discrete longitudinal data: commentary, Stat. Med. 7 (1987) 161–168.
[66] S.L. Zeger, K.-Y. Liang, Longitudinal data analysis for discrete and continuous outcomes, Biometrics 42 (1986) 121–130.
[67] S.L. Zeger, K.-Y. Liang, P.S. Albert, Models for longitudinal data: a generalized estimating equation approach, Biometrics 44 (1988) 1049–1060.
[68] X. Zhang, W.J. Boscardin, T.R. Belin, Sampling correlation matrices in Bayesian models with correlated latent variables, J. Comput. Graph. Statist. 15

(2006) 880–896.
[69] X. Zhang,W.J. Boscardin, T.R. Belin, Bayesian analysis ofmultivariate nominalmeasures usingmultivariatemultinomial probitmodels, Comput. Statist.

Data Anal. 52 (2008) 3697–3708.
[70] A. Ziegler, Simulated classical tests in the multiperiod multinomial probit model, Tech. Rep., Center for European Economic Research, Mannheim,

2002.

http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref38
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref39
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref40
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref41
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref42
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref43
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref44
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref45
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref46
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref47
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref48
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref49
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref50
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref51
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref52
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref53
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref54
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref55
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref56
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref57
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref58
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref59
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref60
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref61
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref62
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref63
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref64
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref65
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref66
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref67
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref68
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref69
http://refhub.elsevier.com/S0047-259X(14)00262-0/sbref70

	A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values
	Introduction
	Background review
	Probit model and multivariate probit model
	Multinomial probit (MNP) model
	Multivariate multinomial probit (MVMNP) model

	Modeling and sampling mixtures of continuous, ordinal and nominal measures
	Modeling mixtures of continuous, ordinal and nominal measures
	Bayesian sampling for mixtures of continuous, ordinal and nominal measures without missing values
	PX-MH algorithm
	Missing data investigation for mixtures of continuous, ordinal and nominal measures

	Simulated examples
	Application to the St Louis Risk Research Project data
	Application to a foreign language study
	Conclusions
	References


