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Abstract

Research in bilingualism often involves quantifying constructs of interest by the use of rating
scales: for example, to measure language proficiency, dominance, or sentence acceptability.
However, ratings are a type of ordinal data, which violates the assumptions of the statistical
methods that are commonly used to analyse them. As a result, the validity of ratings is com-
promised and the ensuing statistical inferences can be seriously distorted. In this article, we
describe the problem in detail and demonstrate its pervasiveness in bilingualism research.
We then provide examples of how bilingualism researchers can employ an appropriate solu-
tion using Bayesian ordinal models. These models respect the inherent discreteness of ratings,
easily accommodate non-normality, and allow modelling unequal psychological distances
between response categories. As a result, they can provide more valid, accurate, and inform-
ative inferences about graded constructs such as language proficiency. Data and code are
publicly available in an OSF repository at https://osf.io/grs8x.

Introduction

Research in bilingualism, as in psycholinguistics more generally, often involves quantifying
constructs of interest by the use of RATING SCALES. In these items, participants are asked to
express a belief by selecting a response from an ordered set (e.g., “How well do you speak
English?”, ‘0 = not well at all’ to ‘6 = very well’). The use of rating scales is ubiquitous in bilin-
gualism research, in particular as part of the standard bilingualism questionnaires: for example,
the Language History Questionnaire (Li, Sepanski, & Zhao, 2006), the Language Experience
and Proficiency Questionnaire (LEAP-Q) (Marian, Blumenfeld, & Kaushanskaya, 2007),
and the Bilingual Language Profile (Birdsong, Gertken, & Amengual, 2012).

One reason for the extensive use of rating scales is that they have wide applicability: they can
be customised to measure many different constructs, including language proficiency (Hakuta,
Bialystok, & Wiley, 2003), nativelikeness of speech (Flege, Yeni-Komshian, & Liu, 1999;
Hopp, 2009), frequency of language mixing (Li et al., 2006), language attitudes (Birdsong
et al., 2012), sentence grammaticality (Cho & Slabakova, 2014), and semantic relatedness
(Farhy & Veríssimo, 2019). Despite this heterogeneity, ratings are thought to yield quite valid
and reliable measurements of such constructs (Marian et al., 2007). Ratings are also particularly
useful to assess graded quantities in bilingualism research (e.g., language proficiency or domin-
ance). Finally, they are broadly considered to be simple to design, administer, and analyse.

The simplicity and usefulness of rating scales may, however, be deceptive. Concerns have
been raised that ratings may be too subjective, variable, and unidimensional to capture com-
plex constructs like language proficiency (Hulstijn, 2012; Lemhöfer & Broersma, 2012;
Tomoschuk, Ferreira, & Gollan, 2019; Zell & Krizan, 2014). Additionally, as discussed
below, ratings constitute a type of data that violates the assumptions of the statistical methods
that are commonly used to analyse them. As a result, their validity is compromised and the
ensuing statistical inferences can be seriously distorted.

The problem

The approach that is near-universally used for the analysis of ratings is to assign a number to
each response and then compute descriptive statistics like means and standard deviations, fol-
lowed by inference from linear models: for example, ANOVAs, t-tests, and linear regressions.
The general problem with this approach is that these methods are appropriate only for METRIC

VARIABLES, which are continuous and inherently quantitative, whereas rating scales are ORDINAL

VARIABLES, in which data consists of ordered, but discrete categories.
The inclination to analyse ratings with metric methods arises because responses can be easily

assigned numerical values. However, ordinal data lacks the important property of EQUIDISTANCE
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between points, which is a requirement for the application of met-
ric methods; that is, the interval between values cannot be assumed
to be constant throughout the scale. For example, in the proficiency
question of the LEAP-Q, the psychological distance between ‘7 =
good’ and ‘8 = very good’ is likely to be larger than that between
‘5 = adequate’ and ‘6 = slightly more than adequate’, due to the dis-
tinct verbal labels. Even if exquisite care is taken in devising the
labels, there are systematic psychological biases in how responses
are perceived (DeCastellarnau, 2018; Krosnick & Presser, 2010).
For example, extreme responses tend to be avoided (Douven,
2018), such that the psychological distance between an endpoint
and its adjacent value may be particularly large (e.g., between ‘0
= none’ and ‘1 = very low’ in the LEAP-Q). Likewise, responses
on each side of the midpoint may be qualitatively different, and
thus perceived to be further apart.

Such tendencies and biases may also vary across tasks, popula-
tions, and individuals (Dawes, 2008; Kuncel, 1977; Schwarz,
1999). A striking example is that the relationship between self-
ratings and objective measures of proficiency may vary as a func-
tion of language dominance and the particular languages used
(Tomoschuk et al., 2019). For example, Spanish–English bilin-
guals who self-rate as a ‘4’ (on a 7-point scale) have greater object-
ive proficiency than Chinese–English bilinguals, but the difference
between groups disappears or reverses for bilinguals who self-rate
as a ‘7’. Such results suggest that ratings vary according to an
internal ‘frame of reference’, which may in turn differ across bilin-
gual groups.

Consequences of analysing ordinal data with metric methods

If the distances between the values of a rating scale cannot be
assumed to be constant, then even the interpretation of a simple
mean breaks down. Figure 1 shows how a 7-point proficiency
scale may be mentally represented if participants avoid extreme
responses and perceive crossing the midpoint as particularly
impactful. In this case, the average proficiency expressed by the
hypothetical responses {‘2’, ‘3’, ‘4’} is not identical to that expressed
by {‘3’, ‘3’, ‘3’}, but actually reflects GREATER average proficiency.
From this we see that when equidistance is violated, the very
same metric mean (here, 3) may not express the same underlying
quantity; rather, what the mean signifies depends on the particular
distribution of responses. This lack of consistency between an
underlying quantity and the metric mean naturally extends to
effects: that is, to differences between means and regression slopes.
Thus, at the very least, estimating ordinal effects with metric meth-
ods brings about a serious problem of interpretability.

Importantly, as demonstrated by Liddell and Kruschke (2018)
with both simulated and real data, metric methods may produce
serious inferential errors when applied to rating scales: namely,
the detection of effects that do not exist; the failure to detect
effects that do exist; and distortions of effect-size estimates. It is
even possible for differences to be INVERTED: that is, for effects
in one direction in the underlying construct (e.g., group A has lar-
ger proficiency than group B) to turn into effects in the opposite
direction when mapped to metric means (e.g., group B > group A)
(this can happen when the underlying distributions have different
variances; see Liddell & Kruschke, 2018).

A (very) wrong model for ordinal data

The negative consequences described above arise because, in add-
ition to unequal distances between responses, other properties of

ordinal data are also fundamentally incompatible with the statistical
models commonly used to analyse them. To see how this is the
case, consider the following dataset.1 Schlenter (2019) conducted
a study in which bilingual speakers listened to 56 German sen-
tences with canonical and non-canonical orders of thematic argu-
ments. In order to determine the acceptability of the two variants,
these sentences were first rated by a group of 42 native speakers,
using a 7-point scale (‘1 = not acceptable’…‘7 = very acceptable’).

A typical analysis would involve computing means in the two
conditions (canonical: 6.35, non-canonical: 5.76), and then fitting
a linear model: for example, a regression with condition as pre-
dictor. The results indicate that non-canonical sentences are less
acceptable (b=−0.59, t=−9.64). As described above, it is hard to
interpret such differences: it is not clear what it means for a con-
struction to have 0.59 ‘units of acceptability’ less, and moreover, if
equidistance cannot be assumed, the interpretation of this differ-
ence depends on the distribution of responses.

In addition, it can be shown that the assumptions of linear
regression are severely violated. This can be assessed with a
PREDICTIVE CHECK, in which instances of ‘predicted data’ are gener-
ated from the fitted statistical model and then compared to the
observed data that the models were fitted on; this check is shown
in Figure 2, panel a. A comparison of the lighter lines (predicted)
against the darker line (observed) reveals that the linear model: (a)
grossly underestimates the proportions of ‘6’s and ‘7’s; (b) predicts
impossible non-integer responses (e.g., 6.27); and (c) predicts a
sizeable proportion of responses outside the 7-point scale.

The mismatches happen because linear models are inherently
continuous and assume that errors are normally distributed. In
other words, the best inference we can draw from this model is
that the observed data in each condition comes from a normally-
distributed population. However, because these assumptions yield
impossible data, we know that this inference is fundamentally
flawed. To be sure, the assumptions of statistical models are
never fully satisfied (“all models are wrong”; Box, 1976).
However, linear models with normally-distributed errors are par-
ticularly wrong when applied to ordinal data.

A pervasive problem in bilingualism

How widespread is the analysis of ordinal data with metric methods
in bilingualism research? Although there are examples of the appli-
cation of appropriatemethods (e.g., Kissling, 2018; Tare et al., 2018),
this is far from common. We quantified this tendency by searching
for all articles published in Bilingualism: Language and Cognition in
2019–2020, containing thewords ‘rating’ or related words. Forty-six
articles analysed ordinal data, mostly proficiency ratings. Of these,
only 3 appropriately summarised it with counts instead of means,
but skipped inferential statistics or reported inappropriate ones;
only 2 used a method that can be applied to ordinal data
(Spearman’s correlation), but still computed means. No article
used both descriptive and inferential statistics that respect the prop-
erties of ordinal data. The remainder of this article describes and
exemplifies a solution to this pervasive problem.

The solution

A better statistical model for ordinal data should fulfil the following
requirements: first, predict discrete response categories, rather than

1Data and code can be downloaded from https://osf.io/grs8x. This article was com-
posed as a reproducible manuscript using the R-package papaja (Aust & Barth, 2020).
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continuous outcomes; second, accommodate non-normal response
distributions; and third, allow for unequal distances between
responses. Ordinal models satisfy all three requirements
(McCullagh, 1980;McKelvey&Zavoina, 1975), and they are relatively
simple for psycholinguists to fit, using readily-available software.

The particular class of ordinal model we describe here is the
THRESHOLDED-CUMULATIVE model. Its basic idea is to assume an
underlying LATENT continuous variable (e.g., proficiency), which
is mapped to proportions of observed responses by being ‘discre-
tised’: that is, chopped into intervals by thresholds placed at differ-
ent points. Figure 3 shows an example (described in greater detail
below). The normal distribution represents the variability of the
latent variable (i.e., more or less proficiency) and the vertical
thresholds divide the distribution into ordered responses
(‘1’…‘7’). The proportion of ‘1’s is given by the area under the
curve up to the first threshold; the proportion of ‘2’s by the area
between the first two thresholds, etc. The threshold locations are
estimated from the observed proportions, and, in this way, we
canmodel how the construct of interest is mapped to the responses.

In the next sections, we provide practical examples of fitting,
interpreting, and assessing ordinal (thresholded-cumulative)
models in the R programming language (R Core Team, 2020).
Models will be constructed in the framework of Bayesian statistics,
with the easy-to-use package brms (Bürkner, 2017). We opt for a
Bayesian approach, because such models: (a) typically provide
greater flexibility and can be easily extended in complexity
(Bürkner, 2018; Bürkner & Vuorre, 2019); (b) converge more eas-
ily on accurate values (Liddell & Kruschke, 2018); (c) provide a
more natural and informative quantification of uncertainty,
because each quantity is accompanied by a full probability distri-
bution (McElreath, 2020). However, note that ordinal models in a
frequentist framework provide another valid solution for analys-
ing ratings (see ordinal package; Christensen, 2019).

The current article is a brief introduction to the application of
Bayesian ordinal models, with examples drawn from bilingual

research. It does not constitute a full tutorial, as the examples
below sidestep several issues that would be considered in a real
analysis.2 For more detailed tutorials and comprehensive treat-
ments of Bayesian analyses, see Bürkner and Vuorre (2019),
Vasishth, Nicenboim, Beckman, Li, and Kong (2018), and
Schad, Betancourt, and Vasishth (2020).

Modelling unequal distances

The modelling of unequal distances can be better understood by
comparing models with and without equidistance. We will make
use of a simulated dataset of proficiency ratings, consisting of the
(randomly generated) responses of 1,000 participants, given on a
7-point scale. The dataset aims to represent a heterogeneous
group of L2 speakers with a mean level at the midpoint of the
scale. Importantly, the data was generated assuming a representa-
tion similar to that in Figure 1: that is, with UNEQUAL DISTANCES

between values. The counts of each response are shown in
Figure 4 below (as bars), and suggest an exaggerated tendency
for choosing the midpoint of the scale.

We use the brm() function to fit two (Bayesian) thresholded-
cumulative models to this dataset. We use a probit link function,
which means that we assume a normally-distributed latent vari-
able. In the first model (m.equidistant), the distance between
each threshold is assumed to be the same:

m.equidistant <- brm(Response ∼ 1,

data = ratings.unequal,

family = cumulative(link=“probit”, threshold=“equidistant”))

Figure 2. Predictive checks for a mixed-effects linear regression model (panel a), and for an ordinal model with flexible threshold locations (panel b). These assess-
ments of model quality involve comparing the probability/counts of different responses (given in a 7-point acceptability scale) in data predicted by the fitted mod-
els (lighter lines in panel a, and dots in panel b) against the observed data that the models were fitted on (darker line in panel a, and bars in panel b). The two
panels depict predicted and observed data differently because the linear model treats responses as continuous and the ordinal model appropriately treats them as
discrete.

Figure 1. The hypothetical mental representation of
a 7-point scale with unequally-spaced intervals.

2These include setting contrasts (Schad, Vasishth, Hohenstein, & Kliegl, 2020), select-
ing a random-effects structure (Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017), spe-
cifying Bayesian priors, and various model checks (Schad, Betancourt, & Vasishth, 2020).
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In the second model (m.flexible), we allow consecutive
thresholds to be estimated at any distance from one another:

m.flexible <- brm(Response∼ 1,

data = ratings.unequal,

family = cumulative(link=“probit”, threshold=“flexible”))

A summary of the flexible model is shown in Table 1 with esti-
mates of each threshold’s position and associated 95% credible
intervals (this is the range within which a parameter falls with

95% probability). The estimates are expressed in standard deviation
(SD) units; for example, the first threshold (labelled Intercept
[1]) is 1.92 SDs below the mean of the latent distribution. The
thresholds are more easily interpreted when visualised, as in
Figure 3. In order to capture the observed proportions of each
response (‘1’ to ‘7’), the thresholds are estimated to be closer
together (e.g., second and third thresholds) or further apart.

The arrows at the bottom of Figure 3 depict the ‘true’ popula-
tion values, which in this case (and unlike with real data) are
already known. The models can be assessed by whether they

Figure 4. Predictive checks for ordinal models with flexible thresholds (full dots) and equidistant thresholds (empty triangles). These assessments of model quality
involve comparing the probability/counts of different responses (given in a 7-point acceptability scale) in data predicted by the fitted models (dots and triangles)
against the observed data that the models were fitted on (shown as bars).

Figure 3. Ordinal model with flexible thresholds fitted to
responses given on a 7-point proficiency scale (data was
simulated in order to have unequal distances between
responses). Estimates of each threshold are shown by
vertical lines, with their 95% credible intervals at the
bottom of each line. Predicted probabilities of each
response (‘1’ to ‘7’) correspond to the areas of the dis-
tribution bounded by the thresholds. Arrows indicate
the ‘true’ threshold locations from which the data was
generated. The latent distribution is assumed to be nor-
mal with mean = 0, SD = 1.
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can recover these underlying parameters, and it can be seen that
the flexible model does a very good job. The equidistant model
fares worse (see Table 1), especially for the third and fourth
thresholds, which are estimated as much closer together than
the population values.

One way of assessing a model’s goodness-of-fit is the previ-
ously discussed predictive check, in which data samples are pre-
dicted from the fitted model and compared to the observed
data. For Bayesian models, these checks can be easily conducted
with the pp_check() function; we use bar plots because the
models are discrete rather than continuous:

pp_check(m.equidistant, type=“bars”, nsamples = 100)
pp_check(m.flexible, type=“bars”, nsamples = 100)

The results are displayed in Figure 4 (in a single plot), and
show that the equidistant model severely underestimates the num-
ber of ‘4’ responses and overestimates the number of ‘3’ and ‘5’

responses. By contrast, the predictions of the flexible model are
very close to the observed data. Another way of assessing models
is to formally compare them: for example, with cross-validation
(Bürkner, 2017; Vasishth et al., 2018); this also shows an advan-
tage for the flexible model (see Appendix S1 in the Supplementary
Material).

From the various comparisons, we would conclude that flex-
ible thresholds are necessary to appropriately model this dataset,
and by extension, that the psychological distances between
response values are not constant across the scale. In particular,
the estimated threshold locations show that ‘5’ responses actually
express greater underlying proficiency than a metric 5 (and ‘3’
responses express lower proficiency than a 3), so that the differ-
ence between a ‘3’-participant and a ‘5’-participant should be
interpreted as particularly large. Such inferences about how the
underlying construct relates to the observed responses are missed
when metric models are used, and are an important advantage of
ordinal models.

Table 1 Summary of a model with flexible thresholds, with estimates and 95% credible intervals for the position of each threshold. For comparison, estimates from
the equidistant model are also displayed, as well as the ‘true’ population values which were used to generate the data.

Estimate L-95% CI U-95% CI Est. Equidistant Population

Intercept[1] −1.92 −2.08 −1.76 −2.16 −2.00

Intercept[2] −1.21 −1.31 −1.11 −1.29 −1.25

Intercept[3] −0.73 −0.82 −0.65 −0.42 −0.75

Intercept[4] 0.75 0.67 0.84 0.45 0.75

Intercept[5] 1.27 1.16 1.38 1.32 1.25

Intercept[6] 1.97 1.80 2.14 2.19 2.00

Figure 5. Effect of AoA on self-rated speaking proficiency. Separate predictions are plotted for each response category (i.e., different probabilities for ‘functional’,
‘good’, ‘very good’, ‘nativelike’). Given that responses are mutually exclusive, their predicted proportions add up to 100% at each AoA. Note that even though the
model predicts an AoA effect for each response category, all predictions arise from a single (linear) effect of AoA on the latent proficiency variable. Shaded bands
indicate 95% credible intervals. Data from Puebla (2016).
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Effects of categorical predictors

To illustrate how the effects of predictors are estimated in ordinal
models, we go back to Schlenter (2019)’s dataset, in which canon-
ical and non-canonical sentences were rated on a 7-point accept-
ability scale. In thresholded-cumulative models, effects are
estimated in the same way as in linear regression (i.e., by ‘shifting’
the mean of a normal distribution), but they take place at the
latent variable, rather than on metric responses.

We fit a (mixed-effects) thresholded-cumulative model with
condition (canonical, non-canonical) as predictor. Because each
participant and item are associated with multiple responses, par-
ticipant and item are included as random effects:

m.canonicity <- brm(Response∼ (1|Participant) +(1|Item)+Condition,

data = acceptability.ratings,

family = cumulative(link=“probit”, threshold=“flexible”))

The effect of condition on acceptability is estimated as -0.68
[-0.83, -0.54] (see model summary in Table S1 in the
Supplementary Material). The effect is expressed in SD units,
which in this case can be interpreted as a standardized effect
size, similar to Cohen’s d (1988; Glass, McGaw, & Smith, 1981).
Both the effect’s magnitude and its narrow credible interval indi-
cate a substantial difference between conditions, with lower
acceptability for non-canonical sentences.

An important aid to interpretation is the examination of the
model’s CONDITIONAL EFFECTS: that is, the predicted proportions
of responses in each condition:

conditional_effects(m.canonicity, categorical = T)

The predictions indicate that canonical sentences have very
high acceptability, with a large proportion of ‘7 = very acceptable’
responses (64% [52, 75]); also see Figure S1 in the Supplementary
Material. The proportion of ‘6’s is lower but still substantial (28%
[20, 34]), and other responses are less frequent (‘5’ responses: 6%
[3, 10]). In turn, the lower acceptability of non-canonical
sentences is expressed by a much smaller proportion of ‘7’s
(37% [26, 49]), and by more lower-acceptability responses
(‘6’ responses: 38% [34, 42]; ‘5’s: 14% [10, 19]).

Such predictions are finer than those obtained from the linear
model above (cf. ‘0.59 less acceptability’), because they are
expressed as probabilities of discrete responses and not in the
inappropriate metric scale. Note also that these proportions are
not calculated directly from the data. Rather, they constitute bet-
ter, more generalisable inferences, because they come from a
model that: (a) estimates the effect of condition across all
responses; (b) takes into account the whole structure of the data
in terms of its participants and items; and (c) can potentially
include other sources of information, like adjustments for
covariates.

Finally, we assess the model’s goodness-of-fit with a predictive
check, displayed in Figure 2, panel b:

pp_check(m.canonicity, type=“bars”, nsamples = 100)

Whereas the predictions of the linear model seriously mis-
matched the data (see above), the ordinal model fares remarkably
well, and readily accommodates both the discreteness of responses
and their non-normality.

Effects of continuous predictors

The usefulness of examining the model’s conditional effects is
particularly clear in the case of continuous predictors. To illus-
trate, we will make use of a dataset collected by Puebla (2016)
in which 55 second language German speakers self-rated their
speaking proficiency on a 7-point scale (responses covered only
the four highest categories, ‘functional’, ‘good’, ‘very good’, and
‘nativelike’). We will estimate the effect of age of acquisition
(AoA) on self-ratings of proficiency (see, e.g., Hakuta et al., 2003).

Responses were coded as categories (e.g., ‘good’), so we first
establish their order, and then fit a thresholded-cumulative
model with AoA as a continuous predictor:

proficiency.ratings$Response <-

ordered(proficiency.ratings$Response, levels =

c(“functional”, “good”, “very good”, “nativelike”))

m.aoa <- brm(Response ∼ AoA, data = proficiency.ratings,

family = cumulative(link=“probit”, threshold=“flexible”))

The effect of AoA on the latent proficiency variable is esti-
mated as -0.15 [-0.22, -0.09] per year (see model summary in
Table S2 in the Supplementary Material). Thus, the effect across
the whole AoA range (4–24 years) is 3 SDs on the latent scale,
indicating a large difference between early and late bilinguals,
with lower proficiency at later AoAs.

We plot the conditional effects of this model (Figure 5):3

conditional_effects(m.aoa, categorical = T)

At the earlier AoAs there is a predominance of ‘nativelike’
responses. As AoA increases, ‘nativelike’ responses decline sharply
and there is an increase in the proportions of the lower-
proficiency categories (i.e., ‘nativelike’ responses are progressively
replaced by ‘very good’ and ‘good’ responses). By an AoA of 13,
all three top proficiency choices are likely responses, but there
is a predominance of ‘very good’s. As AoA increases further
(after puberty), the most common response becomes ‘good’ and
some ‘functional’ responses start emerging.

These inferences are much more informative than what could
be afforded by a linear model, because predictions (and their
uncertainty) are appropriately expressed in terms of the different
response categories.

Conclusions

We have shown how Bayesian ordinal models are an appropriate
solution for the analysis of rating scales, since they respect the dis-
creteness of responses, conform to statistical assumptions, and
allow modelling unequal psychological distances. This last aspect
is particularly relevant for estimating language proficiency,
given that bilinguals of different groups can adopt different
frames of reference in self-ratings (Tomoschuk et al., 2019). We
note that ordinal models are not a panacea against all subjective
biases in ratings; they should ideally be complemented by object-
ive measures (Hulstijn, 2012; Lemhöfer & Broersma, 2012).
Nevertheless, ordinal models can incorporate some of those biases
by modelling how underlying constructs like proficiency map to

3In the case of many response categories, complexity may be reduced by plotting only
a subset of interest or by averaging the predictions for several categories (Kissling, 2018).
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ordered responses. As a result, they provide more valid and accur-
ate inferences than the metric methods that are currently used in
bilingualism research.

Supplementary materials. For supplementary material accompanying this
paper, visit https://doi.org/10.1017/S1366728921000316
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