**EDIT: No issue here! Just a stupid mistake.**

I have a brms.fit object “puco.full”. When I run:

```
brms::fixef(puco.full, probs=c(0.05, 0.95))
```

it returns:

```
> fixef(puco.full, probs=c(0.05, 0.95))
Estimate Est.Error Q5 Q95
Intercept 19960.4330 4761.425 12142.365 27797.8991
HOMO.p 8821.6201 3935.104 2346.349 15294.0025
Trail 763.6816 5299.004 -7941.894 9450.3825
road_dens.sc -2499.8360 1754.979 -5371.706 376.2785
trail_dens.sc 1088.5278 1849.576 -1948.042 4125.0580
lunar.frac.sc 365.2649 1713.789 -2451.644 3176.5037
CR_CLOSURE.sc -1687.5067 1722.609 -4519.080 1136.3774
```

but when i run

```
summary(puco.full)
```

it returns:

```
> summary(puco.full)
Family: gaussian
Links: mu = identity; sigma = identity
Formula: noct ~ HOMO.p + Trail + road_dens.sc + trail_dens.sc + lunar.frac.sc + CR_CLOSURE.sc
Data: PUCO (Number of observations: 46)
Samples: 4 chains, each with iter = 1e+05; warmup = 5000; thin = 1;
total post-warmup samples = 380000
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 19960.43 4761.43 10568.23 29325.91 1.00 409647 296411
HOMO.p 8821.62 3935.10 1050.12 16588.01 1.00 341705 290486
Trail 763.68 5299.00 -9671.60 11221.62 1.00 365641 291449
road_dens.sc -2499.84 1754.98 -5962.39 964.08 1.00 369722 289606
trail_dens.sc 1088.53 1849.58 -2554.26 4732.38 1.00 339163 288769
lunar.frac.sc 365.26 1713.79 -3007.93 3742.60 1.00 404041 291533
CR_CLOSURE.sc -1687.51 1722.61 -5083.54 1707.09 1.00 403517 286610
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 11086.53 1280.42 8923.49 13927.97 1.00 332236 270779
Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
```

It seems the Q5 and Q95 columns of the fixef() call differ from the l-95% CI and u-95% CI columns of summary(). Can anyone explain what the differences between these are? I was under the impression that both would be 95% credible intervals, so they should be identical, but maybe I’m missing something?