Hi all,
I have a discrepancy between the model results and the conditional effect plot. I may not be interpreting the results of my negbinomial model correctly.
The model seems to show a higher difference from the intercept in phase M18, while the conditional effects show a decrease from M6 and M12.
Can anyone help me to understand what is happening?
Thanks in advance!
summary(model_mc_param)
Family: negbinomial
Links: mu = log; shape = identity
Formula: mc_total_parameters ~ phase + offset(log_glosses) + (1 + phase | id) + (1 + phase | exercise)
Data: data (Number of observations: 1245)
Draws: 4 chains, each with iter = 6000; warmup = 2000; thin = 1;
total post-warmup draws = 16000
Multilevel Hyperparameters:
~exercise (Number of levels: 36)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.36 0.06 0.26 0.49 1.00 4703 8552
sd(phaseM12) 0.07 0.06 0.00 0.22 1.00 7424 7358
sd(phaseM18) 0.12 0.09 0.01 0.33 1.00 3835 6222
sd(phaseM24) 0.09 0.07 0.00 0.24 1.00 4332 5602
cor(Intercept,phaseM12) 0.03 0.36 -0.67 0.71 1.00 15314 10652
cor(Intercept,phaseM18) 0.14 0.34 -0.55 0.74 1.00 13570 10639
cor(phaseM12,phaseM18) 0.03 0.38 -0.69 0.72 1.00 8962 11468
cor(Intercept,phaseM24) -0.22 0.36 -0.80 0.56 1.00 11032 11319
cor(phaseM12,phaseM24) 0.05 0.38 -0.69 0.73 1.00 11533 12285
cor(phaseM18,phaseM24) 0.00 0.37 -0.70 0.70 1.00 11369 12232
~id (Number of levels: 14)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.36 0.09 0.22 0.57 1.00 4699 7111
sd(phaseM12) 0.16 0.10 0.01 0.38 1.00 4148 5204
sd(phaseM18) 0.11 0.08 0.00 0.31 1.00 4590 6101
sd(phaseM24) 0.50 0.13 0.30 0.80 1.00 6468 9603
cor(Intercept,phaseM12) -0.25 0.33 -0.79 0.48 1.00 12117 11335
cor(Intercept,phaseM18) -0.05 0.36 -0.70 0.65 1.00 14336 11928
cor(phaseM12,phaseM18) 0.02 0.37 -0.69 0.71 1.00 11878 11841
cor(Intercept,phaseM24) -0.22 0.25 -0.65 0.30 1.00 8296 10446
cor(phaseM12,phaseM24) 0.20 0.33 -0.50 0.75 1.00 3356 5775
cor(phaseM18,phaseM24) -0.09 0.35 -0.73 0.60 1.00 3580 7045
Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept -1.02 0.13 -1.27 -0.75 1.00 3878 5836
phaseM12 -0.16 0.10 -0.34 0.03 1.00 10325 10434
phaseM18 -0.33 0.09 -0.52 -0.15 1.00 11311 10870
phaseM24 -0.24 0.15 -0.56 0.06 1.00 7703 9414
Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
shape 3.57 0.43 2.84 4.52 1.00 14575 11398
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).